Clonal diversity alters the infection dynamics of a malaria parasite (Plasmodium mexicanum) in its vertebrate host.
نویسندگان
چکیده
Ecological and evolutionary theory predicts that genetic diversity of microparasites within infected hosts will influence the parasite replication rate, parasitemia, transmission strategy, and virulence. We manipulated clonal diversity (number of genotypes) of the malaria parasite, Plasmodium mexicanum, in its natural lizard host and measured important features of the infection dynamics, the first such study for any natural Plasmodium-host association. Hosts harboring either a single P. mexicanum clone or various combinations of clones (scored via three microsatellite markers) were established. Production of asexually replicating stages (meronts) and maximal meront parasitemia did not differ by clonal diversity, nor did timing of first production of transmission stages (gametocytes). However, mean rate of gametocyte increase and maximal gametocyte parasitemia were greater for hosts with mixed-clone infections. Characteristics of infections were more variable in hosts with mixed-clone infections than with single-clone infections except for first production of gametocytes. One or more of the parasite reproductive traits were extreme in 20 of 52 hosts with mixed-clone infections. This was not associated with specific clones, but diversity itself. The overall pattern from studies of clonal diversity for human, rodent, and now reptile malaria parasites confirms that the genetic diversity of infections in the vertebrate host is of central importance for the ecology of Plasmodium.
منابع مشابه
Clonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum.
Both verbal and mathematical models of parasite virulence predict that genetic diversity of microparasite infections will influence the level of costs suffered by the host. We tested this idea by manipulating the number of co-existing clones of Plasmodium mexicanum in its natural vertebrate host, the fence lizard Sceloporus occidentalis. We established replicate infections of P. mexicanum made ...
متن کاملClonal diversity of a malaria parasite, Plasmodium mexicanum, and its transmission success from its vertebrate-to-insect host.
Infections of the lizard malaria parasite Plasmodium mexicanum are often genetically complex within their fence lizard host (Sceloporus occidentalis) harbouring two or more clones of parasite. The role of clonal diversity in transmission success was studied for P. mexicanum by feeding its sandfly vectors (Lutzomyia vexator and Lutzomyia stewarti) on experimentally infected lizards. Experimental...
متن کاملClonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.
Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, ...
متن کاملGametocyte sex ratio of a malaria parasite: response to experimental manipulation of parasite clonal diversity.
Sex ratio theory posits that the adaptive proportion of male to female gametocytes of a malaria parasite within the vertebrate host depends on the degree of inbreeding within the vector. Gametocyte sex ratio could be phenotypically flexible, being altered based on the infection's clonal diversity, and thus likely inbreeding. This idea was tested by manipulating the clonal diversity of infection...
متن کاملExperimental test for premunition in a lizard malaria parasite (Plasmodium mexicanum).
Premunition in Plasmodium spp. is the prevention of superinfection by novel genotypes entering an already established infection in a vertebrate host. Evidence for premunition was sought for the lizard malaria parasite, P. mexicanum, in its natural host, the fence lizard, Sceloporus occidentalis. Clonal diversity (= alleles for the haploid parasite) was determined with the use of 3 microsatellit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 90 2 شماره
صفحات -
تاریخ انتشار 2009