An Arbitrary Starting Simplicial Algorithm for Constructively Proving Tarski’s Fixed Point Theorem on an n-dimensional Box∗

نویسنده

  • Chuangyin Dang
چکیده

The well-known Tarski’s fixed point theorem asserts that an increasing mapping from an n-dimensional box to itself has a fixed point. In this paper, a constructive proof of this theorem is obtained from an application of the (n+1)-ray arbitrary starting simplicial algorithm. The algorithm assigns an integer label to each point of the box and employs a triangulation to subdivide the box into simplices. For any given mesh size of the triangulation, starting from an arbitrary interior point of the box, the algorithm generates within a finite number of iterations a complete n-dimensional simplex, any point of which yields an approximate fixed point. If the accuracy is not good enough, the mesh size of the triangulation is refined and the algorithm is restarted. When the mesh size goes to zero sequentially, one will obtain a sequence of approximate fixed points satisfying that every limit point of the sequence is a fixed point.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point method for proving the stability of ring $(alpha, beta, gamma)$-derivations in $2$-Banach algebras

In this paper, we first present the new concept of $2$-normed algebra. We investigate the structure of this algebra and give some examples. Then we apply a fixed point theorem to prove the stability and hyperstability of $(alpha, beta, gamma)$-derivations in $2$-Banach algebras.

متن کامل

A Common Fixed Point Theorem Using an Iterative Method

Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G. Marino with particular choice of the sequence  ${alpha_{n}}$ in Krasonselskii-Mann algorithm, ${x}_{n+1}={alpha}_{n}{x}_{n}+(1-{alpha}_{n})T({x}_{n}),$ proved both weak and strong converging results. In this paper, we generalize thei...

متن کامل

A New Arbitrary Starting Simplicial Algorithm for Computing an Integer Point of an n-Dimensional Simplex∗

Determining whether there is an integer point in an n-dimensional simplex is an NPcomplete problem. In this paper, a new arbitrary starting variable dimension algorithm is developed for computing an integer point of an n-dimensional simplex. The algorithm is derived from an introduction of an integer labeling rule and an application of a triangulation of the space and is composed of two phases,...

متن کامل

$S$-metric and fixed point theorem

In this paper, we prove a general fixed point theorem in $textrm{S}$-metric spaces for maps satisfying an implicit relation on complete metric spaces. As applications, we get many analogues of fixed point theorems in metric spaces for $textrm{S}$-metric spaces.

متن کامل

Brouwer Fixed Point Theorem for Simplexes

In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of E. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008