Evolution and Expression of Tissue Globins in Ray-Finned Fishes
نویسندگان
چکیده
The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characterize canonical “non-blood” globin family members (i.e., myoglobin, cytoglobin, neuroglobin, globin-X, and globin-Y) across multiple ray-finned fish lineages, revealing novel gene duplicates (paralogs) conserved from whole genome duplication (WGD) and small-scale duplication events. Our key findings were that: (1) globin-X paralogs in teleosts have been retained from the teleost-specific WGD, (2) functional paralogs of cytoglobin, neuroglobin, and globin-X, but not myoglobin, have been conserved from the salmonid-specific WGD, (3) triplicate lineage-specific myoglobin paralogs are conserved in arowanas (Osteoglossiformes), which arose by tandem duplication and diverged under positive selection, (4) globin-Y is retained in multiple early branching fish lineages that diverged before teleosts, and (5) marked variation in tissue-specific expression of globin gene repertoires exists across ray-finned fish evolution, including several previously uncharacterized sites of expression. In this respect, our data provide an interesting link between myoglobin expression and the evolution of air breathing in teleosts. Together, our findings demonstrate great-unrecognized diversity in the repertoire and expression of nonblood globins that has arisen during ray-finned fish evolution.
منابع مشابه
Late changes in spliceosomal introns define clades in vertebrate evolution.
The evolutionary origin of spliceosomal introns has been the subject of much controversy. Introns are proposed to have been both lost and gained during evolution. If the gain or loss of introns are unique events in evolution, they can serve as markers for phylogenetic analysis. We have made an extensive survey of the phylogenetic distribution of seven spliceosomal introns that are present in Fu...
متن کاملFish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies
Ray-finned fishes (Actinopterygii) represent more than 50 % of extant vertebrates and are of great evolutionary, ecologic and economic significance, but they are relatively underrepresented in 'omics studies. Increased availability of transcriptome data for these species will allow researchers to better understand changes in gene expression, and to carry out functional analyses. An internationa...
متن کاملFugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes.
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At le...
متن کاملComparative phylogenetic analysis of male alternative reproductive tactics in ray-finned fishes.
Using comparative phylogenetic analysis, we analyzed the evolution of male alternative reproductive tactics (MARTs) in ray-finned fishes (Actinopterygii). Numerous independent origins for each type of MART (involving sneaker males, female mimics, pirates, and satellite males) indicate that these behaviors have been highly labile across actinopterygiian evolution, consistent with a previous noti...
متن کاملResolution of ray-finned fish phylogeny and timing of diversification.
Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehe...
متن کامل