The Edge-flipping Distance of Triangulations
نویسندگان
چکیده
An edge-flipping operation in a triangulation T of a set of points in the plane is a local restructuring that changes T into a triangulation that differs from T in exactly one edge. The edgeflipping distance between two triangulations of the same set of points is the minimum number of edge-flipping operations needed to convert one into the other. In the context of computing the rotation distance of binary trees Sleator, Tarjan, and Thurston show an upper bound of 2n 10 on the maximum edge-flipping distance between triangulations of convex polygons with n nodes, n > 12. Using volumetric arguments in hyperbolic 3-space they prove that the bound is tight. In this paper we establish an upper bound on the edge-flipping distance between triangulations of a general finite set of points in the plane by showing that no more edge-flipping operations than the number of intersections between the edges of two triangulations are needed to transform these triangulations into another, and we present an algorithm that computes such a sequence of edge-flipping operations.
منابع مشابه
Simultaneous Edge Flipping in Triangulations
We generalize the operation of flipping an edge in a triangulation to that of flipping several edges simultaneously. Our main result is an optimal upper bound on the number of simultaneous flips that are needed to transform a triangulation into another. Our results hold for triangulations of point sets and for polygons.
متن کاملA Lower Bound on the Diameter of the Flip Graph
The flip graph is the graph whose nodes correspond to non-isomorphic combinatorial triangulations and whose edges connect pairs of triangulations that can be obtained one from the other by flipping a single edge. In this note we show that the diameter of the flip graph is at least
متن کاملThe Edge--ipping Distance of Triangulations Institut F Ur Informatik | Report 76 *
An edge-ipping operation in a triangulation T of a set of points in the plane is a local restructuring that changes T into a triangulation that diiers from T in exactly one edge. The edge-ipping distance between two triangulations of the same set of points is the minimum number of edge-ipping operations needed to convert one into the other. In the context of computing the rotation distance of b...
متن کاملFlipping edge-labelled triangulations
Flips in triangulations have received a lot of attention over the past decades. However, the problem of tracking where particular edges go during the flipping process has not been addressed. We examine this question by attaching unique labels to the triangulation edges. We introduce the concept of the orbit of an edge e, which is the set of all edges reachable from e via flips. We establish the...
متن کاملAlgorithms for Sampling 3-Orientations of Planar Triangulations
Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-degree three. Each 3-orientation gives rise to a unique edge coloring known as a Schnyder wood that has proven powerful for various computing and combinatorics applications. We consider natural Markov chains for sampling uniformly from the set of 3-orientations. First, we stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 2 شماره
صفحات -
تاریخ انتشار 1996