Bayes estimation for the Marshall-Olkin bivariate Weibull distribution

نویسندگان

  • Debasis Kundu
  • Arjun K. Gupta
چکیده

In this paper, we consider the Bayesian analysis of the Marshall-Olkin bivariate Weibull distribution. It is a singular distribution whose marginals are Weibull distributions. This is a generalization of the Marshall-Olkin bivariate exponential distribution. It is well known that the maximum likelihood estimators of the unknown parameters do not always exist. The Bayes estimators are obtained with respect to the squared error loss function and the prior distributions allow for prior dependence among the components of the parameter vector. If the shape parameter is known, the Bayes estimators of the unknown parameters can be obtained in explicit forms under the assumptions of independent priors. If the shape parameter is unknown, the Bayes estimators cannot be obtained in explicit forms. We propose to use importance sampling method to compute the Bayes estimators and also to construct associated credible intervals of the unknown parameters. The analysis of one data set is performed for illustrative purposes. Finally we indicate the analysis of data sets obtained from series and parallel systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm

In this paper we consider the Marshall-Olkin bivariate Weibull distribution. The Marshall-Olkin bivariate Weibull distribution is a singular distribution, whose both the marginals are univariate Weibull distributions. This is a generalization of the Marshall-Olkin bivariate exponential distribution. The cumulative joint distribution of the Marshall-Olkin bivariate Weibull distribution is a mixt...

متن کامل

An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring

We consider the problem of estimation of the parameters of the Marshall-Olkin Bivariate Weibull distribution in the presence of random censoring. Since the maximum likelihood estimators of the parameters can not be expressed in a closed form, we suggest an EM algorithm to compute the same. Extensive simulations are done to conclude that the estimators perform efficiently under random censoring.

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Bivariate Semi-Logistic Distribution and Processes

Bivariate semi-logistic and Marshall-Olkin bivariate semi-logistic distributions are introduced. Some properties of these distributions are studied. First order autoregressive processes with bivariate semi-logistic and Marshall-Olkin bivariate semi-logistic distributions as marginals are introduced and studied.

متن کامل

Generalized Marshall-Olkin distributions and related bivariate aging properties

A class of generalized bivariate Marshall–Olkin distributions, which includes as special cases the Marshall-Olkin bivariate exponential distribution and the Marshall-Olkin type distribution due to Muliere and Scarsini (1987), are examined in this paper. Stochastic comparison results are derived, and bivariate aging properties, together with properties related to evolution of dependence along ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013