Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas.

نویسندگان

  • Agnes Elias
  • Markus D Siegelin
  • Albert Steinmüller
  • Andreas von Deimling
  • Ulrike Lass
  • Bernhard Korn
  • Wolf Mueller
چکیده

PURPOSE To identify and characterize epigenetically regulated genes able to predict sensitivity or resistance to currently tested chemotherapeutic agents in glioma therapy. EXPERIMENTAL DESIGN We used methylation-sensitive BeadArray technology to identify novel epigenetically regulated genes associated with apoptosis and with potential therapeutic targets in glioma therapy. To elucidate the functional consequences of promoter methylation in the identified target death receptor 4 (DR4), we investigated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated and anti-DR4-mediated apoptosis in glioma cell lines (U373 and A172) with loss of DR4 and one glioma cell line (LN18) with robust DR4 expression. RESULTS In human astrocytic tumors, we detected DR4 promoter hypermethylation in 60% (n = 5) of diffuse astrocytomas WHO grade 2, in 75% (n = 8) of anaplastic astrocytomas WHO grade 3, and in 70% of glioblastomas WHO grade 4 (n = 33). DR4 is a cell surface protein restricted to glioma cells and is targeted by TRAIL. Glioma cell lines U373 and A172 harbored heavily methylated DR4 promoters, and 5-aza-2-deoxycytidine-mediated demethylation reconstituted DR4 expression in these cell lines. Functional knockdown of DR4 by DR4-specific small interfering RNA in TRAIL-sensitive glioma cell line LN18 significantly mitigated apoptosis induced by an agonistic anti-DR4 antibody. 5-Aza-2-deoxycytidine-mediated demethylation resulted in a functional reconstitution of DR4 on the cell surface of TRAIL-resistant glioma cell line U373 and sensitized U373 to TRAIL-mediated apoptosis. Suppression of DR4 by small interfering RNA in demethylated U373 successfully reestablished the TRAIL-resistant phenotype of U373. CONCLUSIONS DR4 promoter methylation is frequent in human astrocytic gliomas, and epigenetic silencing of DR4 mediates resistance to TRAIL/DR4-based glioma therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic Silencing of Apoptosis-Inducing Gene Expression Can Be Efficiently Overcome by Combined SAHA and TRAIL Treatment in Uterine Sarcoma Cells

The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3-7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) by combined treatment wit...

متن کامل

Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo.

The intractability of malignant gliomas to multimodality treatments plays a large part in their extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel member of the tumor necrosis factor (TNF) family that induces apoptosis preferentially in tumor cells through binding to its cognate death receptors, DR4 and DR5. Here we show that the DNA-damaging ch...

متن کامل

Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation.

Death receptor DR5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we showed that curcumin, a plant product containing the phenolic phytochemical, is a potent enhancer of TRAIL-induced apoptosis through upregulation of DR5 expression. Both treatment with DR5/Fc chimeric protein and silencing of DR5 exp...

متن کامل

S-nitrosylation in TNF superfamily signaling pathway: Implication in cancer☆

One of the key features of tumor cells is the acquisition of resistance to apoptosis. Thus, novel therapeutic strategies that circumvent apoptotic resistance and result in tumor elimination are needed. One strategy to induce apoptosis is to activate death receptor signaling pathways. In the tumor microenvironment, stimulation of Fas, Death receptor 4 (DR4) and tumor necrosis factor receptor 1 (...

متن کامل

Reovirus-induced apoptosis is mediated by TRAIL.

Members of the tumor necrosis factor (TNF) receptor superfamily and their activating ligands transmit apoptotic signals in a variety of systems. We now show that the binding of TNF-related, apoptosis-inducing ligand (TRAIL) to its cellular receptors DR5 (TRAILR2) and DR4 (TRAILR1) mediates reovirus-induced apoptosis. Anti-TRAIL antibody and soluble TRAIL receptors block reovirus-induced apoptos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 15 17  شماره 

صفحات  -

تاریخ انتشار 2009