Near-Source Released Energy in Relation to Fracture Energy on Earthquake Faults
نویسندگان
چکیده
The near-source energy released on a fault is estimated through the strain energy change and the fracture energy from the results of kinematic waveform inversion and dynamic modeling for two different types of earthquakes: a shallow crustal earthquake, the 2000 Tottori, Japan (Mw 6.6) earthquake, and an in-slab event, the 1999 Oaxaca, Mexico (Mw 7.5) earthquake. The procedure incorporates the spatial distribution of slip, critical slip-weakening distance, stress drop, and strength excess. The results show that the near-source energy density estimated over major asperities on the fault is nearly the same for the two earthquakes, while the fracture energy on the in-slab fault is appreciably larger than that for the crustal fault, suggesting higher strength in the in-slab fault zone. The near-source released energy on major asperities is significantly larger than the fracture energy in the two earthquakes.
منابع مشابه
Numerical analysis of energy transmission through discontinuities and fillings in Kangir Dam
A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration is conveyed to the adjacent structures by body and surface waves. Geological structures li...
متن کاملBeginning of Earthquakes Modeled with the Griffith's Fracture Criterion
We present a source model for the beginning of earthquakes based on the Griffith's fracture criterion. The initial state is a critical state of pre-existing circular fault, which is on the verge of instability. After the onset of instability, the fault grows with a progressively increasing rupture speed, satisfying the condition of fracture energy balance at the crack tip. We investigate the di...
متن کاملNear - Source Imaging of Seismic Rupture
The nature of failure in earthquakes is one of the most fundamental questions in geophysics. We approach this problem using near-source seismic recordings of strongground motion to image the rupture process of earthquakes. We apply the technique to three well-recorded earthquakes in California and interpret the results in terms of earthquake rupture dynamics. To calculate theoretical seismogram...
متن کاملEvaluation of 2D concentrically braced frames with cylindrical dampers subjected to near-field earthquake ground motions
Near field earthquakes have imposed major damage to buildings in the past years. In some cases, the intensity of such damage is too considerable to be disregarded. The most effective way to improve seismic performance of buildings is applying a seismic control technique. The cylindrical friction damper is one of these methods, which has become popular for its desirable performance in the energy...
متن کاملEffect of Fling-Step on Seismic Response of Steel Eccentrically Braced Frame Structures
Fling-step and forward directivity are two important characteristics of near-field earthquakes. Forward directivity occurs when the rupture propagates toward the site and arises in fault‐normal direction for strike‐slip faults. Fling-step is the consequence of permanent ground displacement imposed by near-field earthquakes and arises in strike-slip faults in the strike parallel direction. Fling...
متن کامل