On the Complexity of Partial Derivatives
نویسندگان
چکیده
The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is ♯P-hard and we ask whether it belongs to ♯P. We analyze the “trace method”, recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees.
منابع مشابه
Biclique Cryptanalysis of Block Ciphers LBlock and TWINE-80 with Practical Data Complexity
In the biclique attack, a shorter biclique usually results in less data complexity, but at the expense of more computational complexity. The early abort technique can be used in partial matching part of the biclique attack in order to slightly reduce the computations. In this paper, we make use of this technique, but instead of slight improvement in the computational complexity, we keep the amo...
متن کاملTheoretical Study of the Correlation between 14N NQCC and Its Partial Atomic Charge in Amino Derivatives of Adamantane
The electronic structures and the electrostatic potential of some amino derivatives of adamantane have been studied using the density functional theory. The partial atomic charges and nuclear quadrupole coupling constants (NQCC) of 14N nucleus of the considered molecules have been reported. The partial atomic charges are calculated with two methods for 14N nucleus: Mulliken charges and natural ...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملPartial Derivatives in Arithmetic Complexity and Beyond
How complex is a given multivariate polynomial? The main point of this survey is that one can learn a great deal about the structure and complexity of polynomials by studying (some of) their partial derivatives. The bulk of the survey shows that partial derivatives provide essential ingredients in proving both upper and lower bounds for computing polynomials by a variety of natural arithmetic m...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کامل