A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations
نویسندگان
چکیده
In this paper we address the problem of off-grid direction of arrival (DOA) estimation based on sparse representations in the situation of multiple measurement vectors (MMV). A novel sparse DOA estimation method which changes MMV problem to SMV is proposed. This method uses sparse representations based on weighted eigenvectors (SRBWEV) to deal with the MMV problem. MMV problem can be changed to single measurement vector (SMV) problem by using the linear combination of eigenvectors of array covariance matrix in signal subspace as a new SMV for sparse solution calculation. So the complexity of this proposed algorithm is smaller than other DOA estimation algorithms of MMV. Meanwhile, it can overcome the limitation of the conventional sparsity-based DOA estimation approaches that the unknown directions belong to a predefined discrete angular grid, so it can further improve the DOA estimation accuracy. The modified Rife algorithm for DOA estimation (MRife-DOA) is simulated based on SRBWEV algorithm. In this proposed algorithm, the largest and sub-largest inner products between the measurement vector or its residual and the atoms in the dictionary are utilized to further modify DOA estimation according to the principle of Rife algorithm and the basic idea of coarse-to-fine estimation. Finally, simulation experiments show that the proposed algorithm is effective and can reduce the DOA estimation error caused by grid effect with lower complexity.
منابع مشابه
Off-Grid DOA Estimation Based on Sparse Representation and Rife Algorithm
In this paper, off-grid DOA estimation based on sparse representation and Rife algorithm is presented to improve performance when the sparse signal directions are not on the predefined angular grids. The algorithm is divided into two steps. Firstly, the real-valued sparse representation of array covariance vector (RV-SRACV) algorithm is used to do off-grid DOA estimation, and it does not need t...
متن کاملOff-Grid Direction-of-Arrival Estimation Using a Sparse Array Covariance Matrix
An off-grid direction-of-arrival (DOA) estimation method that utilizes a sparse array covariance matrix is proposed. In this method, the array covariance matrix is sparsely represented in the form of a vector and then modified to become an off-grid DOA estimation model according to the first-order Taylor series. By solving for the two sparse vectors in the resulting array covariance matrix, the...
متن کاملUnderdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning
Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and estimation performance be...
متن کاملOff-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing
This paper presents a novel off-grid direction of arrival (DOA) estimation method to achieve the superior performance in compressed sensing (CS), in which DOA estimation problem is cast as a sparse reconstruction. By minimizing the mixed k-l norm, the proposed method can reconstruct the sparse source and estimate grid error caused by mismatch. An iterative process that minimizes the mixed k-l n...
متن کاملJoint DOA Estimation and Array Calibration Using Multiple Parametric Dictionary Learning
This letter proposes a multiple parametric dictionary learning algorithm for direction of arrival (DOA) estimation in presence of array gain-phase error and mutual coupling. It jointly solves both the DOA estimation and array imperfection problems to yield a robust DOA estimation in presence of array imperfection errors and off-grid. In the proposed method, a multiple parametric dictionary lear...
متن کامل