Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions.
نویسندگان
چکیده
B-class MADS box genes specify petal and stamen identities in several core eudicot species. Members of the Solanaceae possess duplicate copies of these genes, allowing for diversification of function. To examine the changing roles of such duplicate orthologs, we assessed the functions of B-class genes in Nicotiana benthamiana and tomato (Solanum lycopersicum) using virus-induced gene silencing and RNA interference approaches. Loss of function of individual duplicates can have distinct phenotypes, yet complete loss of B-class gene function results in extreme homeotic transformations of petal and stamen identities. We also show that these duplicate gene products have qualitatively different protein-protein interaction capabilities and different regulatory roles. Thus, compensatory changes in B-class MADS box gene duplicate function have occurred in the Solanaceae, in that individual gene roles are distinct, but their combined functions are equivalent. Furthermore, we show that species-specific differences in the stamen regulatory network are associated with differences in the expression of the microRNA miR169. Whereas there is considerable plasticity in individual B-class MADS box transcription factor function, there is overall conservation in the roles of the multimeric MADS box B-class protein complexes, providing robustness in the specification of petal and stamen identities. Such hidden variability in gene function as we observe for individual B-class genes can provide a molecular basis for the evolution of regulatory functions that result in novel morphologies.
منابع مشابه
Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins.
The LEAFY (LFY) protein is a key regulator of flower development in angiosperms. Its gradually increased expression governs the sharp floral transition, and LFY subsequently controls the patterning of flower meristems by inducing the expression of floral homeotic genes. Despite a wealth of genetic data, how LFY functions at the molecular level is poorly understood. Here, we report crystal struc...
متن کاملMolecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)
Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...
متن کاملSEPALLATA gene diversification: brave new whorls.
SEPALLATA (SEP) genes form an integral part of models that outline the molecular basis of floral organ determination and are hypothesized to act as co-factors with ABCD floral homeotic genes in specifying different floral whorls. The four SEP genes in Arabidopsis function redundantly, but the extent to which SEP genes in other flowering plants function similarly is unknown. Using a recent 113-g...
متن کاملEvolution in Action: Following Function in Duplicated Floral Homeotic Genes
Gene duplication plays a fundamental role in evolution by providing the genetic material from which novel functions can arise. Newly duplicated genes can be maintained by subfunctionalization (the duplicated genes perform different aspects of the original gene's function) and/or neofunctionalization (one of the genes acquires a novel function). PLENA in Antirrhinum and AGAMOUS in Arabidopsis ar...
متن کاملPatterns of molecular evolution among paralogous floral homeotic genes.
The plant MADS-box regulatory gene family includes several loci that control different aspects of inflorescence and floral development. Orthologs to the Arabidopsis thaliana MADS-box floral meristem genes APETALA1 and CAULIFLOWER and the floral organ identity genes APETALA3 and PISTILLATA were isolated from the congeneric species Arabidopsis lyrata. Analysis of these loci between these two Arab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2010