STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN

نویسندگان

  • GHASEM A. AFROUZI
  • ARMIN HADJIAN
  • SHAPOUR HEIDARKHANI
چکیده

Under suitable assumptions on the potential of the nonlinearity, we study the existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic

We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...

متن کامل

Two-Parameter Eigenvalues Steklov Problem involving the p-Laplacian

We study the existence of eigenvalues for a two parameter Steklov eigenvalues problem with weights. Moreover, we prove the simplicity and the isolation results of the principal eigenvalue. Finally, we obtain the continuity and the differentiability of this principal eigenvalue. AMS Subject Classifications: 35J60, 35B33.

متن کامل

Multiple solutions to a class of inclusion problems with operator involving p ( x ) - Laplacian

In this paper, we prove the existence of at least two nontrivial solutions for a nonlinear elliptic problem involving p(x)-Laplacian-like operator and nonsmooth potentials. Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions.

متن کامل

Existence and Multiplicity of Solutions for a Steklov Problem Involving the P(x)-laplace Operator

In this article we study the nonlinear Steklov boundary-value problem ∆p(x)u = |u|p(x)−2u in Ω, |∇u|p(x)−2 ∂u ∂ν = λf(x, u) on ∂Ω. Using the variational method, under appropriate assumptions on f , we obtain results on existence and multiplicity of solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014