Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.
نویسنده
چکیده
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
منابع مشابه
A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame
A new two-distribution lattice Boltzmann equation (LBE) algorithm is presented to solve the laminar diffusion flames within the context of Burke–Schumann flame sheet model. One distribution models the transport of the Schvab–Zeldovich coupling function, or the mixture fraction to combine the energy and species equations. The other distribution models the quasi-incompressible Navier–Stokes equat...
متن کاملLattice Boltzmann Model for the Incompressible NavierStokes Equation
In the last decade or so, the lattice Boltzmann (LB) method has emerged as a new and effective numerical technique of computational fluid dynamics (CFD).(1-5) Modeling of the incompressible Navier-Stokes equation is among many of its wide applications. Indeed, the lattice Boltzmann equation (LBE) was first proposed to simulate the incompressible NavierStokes equations.(1) The incompressible Nav...
متن کاملLattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations
A relaxation system based on a Lattice-Boltzmann type discrete velocity model is considered in the low Mach number limit. A third order relaxation scheme is developed working uniformly for all ranges of the mean free path and Mach number. In the incompressible Navier-Stokes limit the scheme reduces to an explicit high order finite difference scheme for the incompressible Navier-Stokes equations...
متن کاملA new discrete velocity method for Navier–Stokes equations
The relation between the Lattice Boltzmann Method, which has recently become popular, and the Kinetic Schemes, which are routinely used in Computational Fluid Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier–Stokes equations for incompressible fluid flow is presented by combining both the approaches. The new scheme can be interpreted as a pseudo-compress...
متن کاملMechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes
A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2009