Comparative Transcriptome Analysis of Genes Involved in GA-GID1-DELLA Regulatory Module in Symbiotic and Asymbiotic Seed Germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae)
نویسندگان
چکیده
Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is an endangered medicinal plant in China, also called "King Medicine". Due to lacking of sufficient nutrients in dust-like seeds, orchid species depend on mycorrhizal fungi for seed germination in the wild. As part of a conservation plan for the species, research on seed germination is necessary. However, the molecular mechanism of seed germination and underlying orchid-fungus interactions during symbiotic germination are poorly understood. In this study, Illumina HiSeq 4000 transcriptome sequencing was performed to generate a substantial sequence dataset of germinating A. roxburghii seed. A mean of 44,214,845 clean reads were obtained from each sample. 173,781 unigenes with a mean length of 653 nt were obtained. A total of 51,514 (29.64%) sequences were annotated, among these, 49 unigenes encoding proteins involved in GA-GID1-DELLA regulatory module, including 31 unigenes involved in GA metabolism pathway, 5 unigenes encoding GID1, 11 unigenes for DELLA and 2 unigenes for GID2. A total of 11,881 genes showed significant differential expression in the symbiotic germinating seed sample compared with the asymbiotic germinating seed sample, of which six were involved in the GA-GID1-DELLA regulatory module, and suggested that they might be induced or suppressed by fungi. These results will help us understand better the molecular mechanism of orchid seed germination and orchid-fungus symbiosis.
منابع مشابه
Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling.
DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and pr...
متن کاملMembers of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination
Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylog...
متن کاملThe Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants
Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the flowering plant. Impressive advances have been made in elucidating the GA pathway with the cloning and characterization of genes encoding most GA biosynthesis and catabolism enzymes, GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling compon...
متن کاملGibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development.
The diterpenoid hormone GA controls diverse developmental processes throughout the life cycle of a plant. Physiological and genetic studies show that active GA promotes seed germination and vegetative growth. In some species, GA also induces flowering and regulates flower, fruit, and seed development. This article highlights recent advances in our understanding of the molecular mechanisms of GA...
متن کاملRelease of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant.
The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is us...
متن کامل