Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism.
نویسندگان
چکیده
The generation of toxic oligomers during the aggregation of the amyloid-β (Aβ) peptide Aβ42 into amyloid fibrils and plaques has emerged as a central feature of the onset and progression of Alzheimer's disease, but the molecular pathways that control pathological aggregation have proved challenging to identify. Here, we use a combination of kinetic studies, selective radiolabeling experiments, and cell viability assays to detect directly the rates of formation of both fibrils and oligomers and the resulting cytotoxic effects. Our results show that once a small but critical concentration of amyloid fibrils has accumulated, the toxic oligomeric species are predominantly formed from monomeric peptide molecules through a fibril-catalyzed secondary nucleation reaction, rather than through a classical mechanism of homogeneous primary nucleation. This catalytic mechanism couples together the growth of insoluble amyloid fibrils and the generation of diffusible oligomeric aggregates that are implicated as neurotoxic agents in Alzheimer's disease. These results reveal that the aggregation of Aβ42 is promoted by a positive feedback loop that originates from the interactions between the monomeric and fibrillar forms of this peptide. Our findings bring together the main molecular species implicated in the Aβ aggregation cascade and suggest that perturbation of the secondary nucleation pathway identified in this study could be an effective strategy to control the proliferation of neurotoxic Aβ42 oligomers.
منابع مشابه
Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملCrucial role of nonspecific interactions in amyloid nucleation.
Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenuc...
متن کاملSecondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification.
Parkinson's disease (PD) is characterized by proteinaceous aggregates named Lewy Bodies and Lewy Neurites containing α-synuclein fibrils. The underlying aggregation mechanism of this protein is dominated by a secondary process at mildly acidic pH, as in endosomes and other organelles. This effect manifests as a strong acceleration of the aggregation in the presence of seeds and a weak dependenc...
متن کاملNovel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation.
The formation of amyloid β (Aβ) fibrils is crucial in initiating the cascade of pathological events that culminates in Alzheimer's disease. In this study, we investigated the mechanism of Aβ fibril formation from hydrodynamically well defined species under controlled aggregation conditions. We present a detailed mechanistic model that furnishes a novel insight into the process of Aβ42 fibril fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 24 شماره
صفحات -
تاریخ انتشار 2013