Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo
نویسندگان
چکیده
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.
منابع مشابه
Cyclic AMP-induced p53 Destabilization is Independent of CREB in pre-B Acute Lymphoblastic Leukemia Cells
Elevated cAMP levels in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells attenuate the doxorubicin-induced p53 accumulation and protect cells against apoptosis. cAMP responsive element binding protein (CREB) is a cAMP-stimulated transcription factor that regulates genes whose deregulated expression cooperatein oncogenesis. In the present study, we investigated the role of CREB on i...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملThe Importance of the Prenyl Group in the Activities of Osthole in Enhancing Bone Formation and Inhibiting Bone Resorption In Vitro
Osteoporosis treatment always aimed at keeping the balance of bone formation and bone resorption. Recently, prenyl group in natural products has been proposed as an active group to enhance the osteogenesis process. Osthole has both the prenyl group and bone-protective activities, but the relationship is still unknown. In this study we found that osthole exerted a potent ability to promote proli...
متن کاملcAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin
BACKGROUND Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown. METHODS AND FINDINGS We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhance...
متن کاملMolecular characterization of the zinc finger transcription factor, Osterix.
Osterix was identified as a transcription factor expressing, in osteoblasts, required for bone formation. However, the molecular mechanisms of the gene regulation by Osterix remain elusive. In this study, we examined the transactivation property of Osterix by using the Gal4 fusion system reporter assay. We identified the transactivation domain of Osterix, which contains high proline and glycine...
متن کامل