Network Intrusion Detection Based on the Improved Artificial Fish Swarm Algorithm

نویسندگان

  • Guo Wang
  • Dong Dai
چکیده

In order to predict network anomalies and get rid of the drawbacks of current detection, early prediction of abnormal for detecting early characteristics of the abnormal is introduced in the invasion anomaly detection process. First, the objective functions are constructed according to the feature subset dimensions and the detection accurate rates of the detection model. Then the artificial fish swarm algorithm is used to search the optimal feature subset and the chaotic, feedback mechanisms are introduced to improve the artificial fish swarm algorithm, the excessive intrusion feature rough sets produced in the classification process are simplified to guarantee the simplicity of characteristics and the estimation model for residuals gray level to predicate the early simplified invasion. Finally KDD1999 database is applied to testify the validity of the algorithm. The simulation results illustrate the improved artificial fish swarm algorithm can obtain the optimal intrusion feature subsets and reduce the dimensions of the feature subsets, which not only increase the network intrusion detection rates and reduce the errors, but also speed up the network abnormal intrusion detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Research on Intrusion Detection Algorithm Based on BP Neural Network

In recent years, the problem of network security has been more and more people's attention, as one of the most important technology of network security, intrusion detection technology has gone through nearly thirty years of development, but it still exists some deficiency factors. Aiming at the defects of the traditional BP neural network intrusion detection model in the detection rate and the ...

متن کامل

Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand

Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...

متن کامل

Information technologies Optimization of the Connection Weights and Thresholds in the Seismic Inversion Neural Network Algorithm

In the seismic inversion model, as the neural network algorithm there are some problems, the convergence bad, accuracy is not high. This paper presents a seismic inversion based on artificial fish Swarm Optimization neural network models. First to initialize fish mapping of chaos optimization and ergodicity of artificial fish-swarm search and adaptive strategies of artificial fish-swarm algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013