Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158.
نویسندگان
چکیده
Bacterial periplasmic nitrate reductases (Nap) can play different physiological roles and are expressed under different conditions depending on the organism. Rhodobacter sphaeroides DSM158 has a Nap system, encoded by the napKEFDABC gene cluster, but nitrite formed is not further reduced because this strain lacks nitrite reductase. Nap activity increases in the presence of nitrate and oxygen but is unaffected by ammonium. Reverse transcription-PCR and Northern blots demonstrated that the napKEFDABC genes constitute an operon transcribed as a single 5.5-kb product. Northern blots and nap-lacZ fusions revealed that nap expression is threefold higher under aerobic conditions but is regulated by neither nitrate nor ammonium, although it is weakly induced by nitrite. On the other hand, nitrate but not nitrite causes a rapid enzyme activation, explaining the higher Nap activity found in nitrate-grown cells. Translational nap'-'lacZ fusions reveal that the napK and napD genes are not efficiently translated, probably due to mRNA secondary structures occluding the translation initiation sites of these genes. Neither butyrate nor caproate increases nap expression, although cells growing phototrophically on these reduced substrates show a very high Nap activity in vivo (nitrite accumulation is sevenfold higher than in medium with malate). Phototrophic growth on butyrate or caproate medium is severely reduced in the NapA(-) mutants. Taken together, these results indicate that nitrate reduction in R. sphaeroides is mainly regulated at the level of enzyme activity by both nitrate and electron supply and confirm that the Nap system is involved in redox balancing using nitrate as an ancillary oxidant to dissipate excess reductant.
منابع مشابه
Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster.
The phototrophic bacterium Rhodobacter sphaeroides DSM 158 is able to reduce nitrate to nitrite by means of a periplasmic nitrate reductase which is induced by nitrate and is not repressed by ammonium or oxygen. Recently, a 6.8 kb PstI DNA fragment carrying the napABC genes coding for this periplasmic nitrate-reducing system was cloned [Reyes, Roldán, Klipp, Castillo and Moreno-Vivián (1996) Mo...
متن کاملConjugative Transfer and Expression of Genes Coding for Periplasmic Nitrate Reductase in the Purple Bacterium Rhodospirillum rubrum
Plasmid pFR400. a derivative of the vector plasmid pPHU231 containing the structural genes of the peri plasmic nitrate reductase (nap genes) of Rhodobacter sphaeroides DSM 158 (F. Reyes et al., Molec. Microbiol. 19, 1307-1318 [1996]) was transferred by conjugative mating to a streptomycin-resistant strain of the nitrate reductase-negative nonsulfur purple bacterium Rho dospirillum rubrum SI. ...
متن کاملThe assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates nitrate under anaerobic phototrophic growth conditions. A 17 kb DNA region encoding the nitrate assimilation (nas) system of this bacterium has been cloned and sequenced. This region includes the genes coding for a putative ABC (ATP-binding cassette)-type nitrate transporter (nasFED) and the structural genes for the enzymes nitr...
متن کاملHalotolerance of the Phototrophic Bacterium Rhodobacter capsulatus E1F1 Is Dependent on the Nitrogen Source.
Phototrophic growth of the moderate halotolerant Rhodobacter capsulatus strain E1F1 in media containing up to 0.3 M NaCl was dependent on the nitrogen source used. In these media, increased growth rates and growth levels were observed in the presence of reduced nitrogen sources such as ammonium and amino acids. When the medium contained an oxidized nitrogen source (dinitrogen or nitrate), incre...
متن کاملDetection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA.
A nested PCR primed by four degenerate oligonucleotides was developed for the specific amplification of sequences from the napA gene encoding the periplasmic nitrate reductase. This approach was used to amplify fragments of the napA gene from 10 Pseudomonas species and one Moraxella sp., previously shown to be able to express the periplasmic nitrate reductase activity, from Rhodobacter capsulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 184 6 شماره
صفحات -
تاریخ انتشار 2002