Fourier spectral methods for fractional-in-space reaction-diffusion equations
نویسندگان
چکیده
Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملFurther solutions of fractional reaction-diffusion equations in terms of the H-function
This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation associated with the Caputo derivative as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the Laplace and Fourier transforms in closed form in terms of the H-function. The results derived are of general natu...
متن کاملApplication of high-order spectral method for the time fractional mobile/immobile equation
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کامل