Transistor Sizing of Logic Gates to Maximize Input Delay Variability

نویسندگان

  • Tezaswi Raja
  • Vishwani D. Agrawal
  • Michael L. Bushnell
چکیده

The time taken for a CMOS logic gate output to change after one or more inputs have changed is called the delay of the gate. A conventional multi-input CMOS gate is designed to have the same input to output delay irrespective of which input caused the output to change. A gate which can offer different delays for different input-output paths through it, is known as a variable input delay (VID) gate and the maximum difference in delays of any two paths through the gate is known as “ub.” The VID gates have a known application in minimizing the active power of a digital CMOS circuit. A previous publication has proposed three different designs for implementing VID gates. In this paper, we describe transistor sizing methods to implement the three types of VID gates for any specified delay requirement. We also describe techniques for calculating the ub for each type of gate design. We outline an algorithm for an efficient determination of the transistor sizes for a gate for given delays and output load capacitance. The algorithm is a two-step approach with a look-up table of sizes in the first stage and a sensitivity based steepest descent method for the second stage. We also give a brief introduction to the power saving potential by maximizing ub when used in conjunction with the previously published technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing Spurious Switching Activities with Transistor Sizing

In combinatorial blocks of static CMOS circuits transistor sizing can be applied for delay balancing as to guarantee synchronously arriving signal slopes at the input of logic gates, thereby avoiding glitches. Since the delay of logic gates depends directly on transistor sizes, their variation allows to equalize different path delays without influencing the total delay of the circuit. Unfortuna...

متن کامل

Efficient Delay Characterization Method to Obtain the Output Waveform of Logic Gates Considering Glitches

Accurate delay calculation of circuit gates is very important in timing analysis of digital circuits. Waveform shapes on the input ports of logic gates should be considered, in the characterization phase of delay calculation, to obtain accurate gate delay values. Glitches and their temporal effect on circuit gate delays should be taken into account for this purpose. However, the explosive numbe...

متن کامل

Design of Variable Input Delay Gates for Low Dynamic Power Circuits

The time taken for a CMOS logic gate output to change after one or more inputs have changed is called the output delay of the gate. A conventional multi-input CMOS gate is designed to have the same input to output delay irrespective of which input caused the output to change. A gate which can offer different delays for different input-output paths through it, is known as a v ̄ ariable input dela...

متن کامل

Variable Input Delay CMOS Logic Design for Low Dynamic Power Circuits

A gate that offers different delays for different input-output paths through it, is known as a variable input delay (VID) gate. The upper bound on this differential delay capability is specified by the parameter “ub”. These gates can be used to minimize the active power of a digital CMOS circuit by a path balancing and glitch filtering techniques discussed in recent publications. In this paper,...

متن کامل

Minimizing gate capacitances with transistor sizing

In this paper a method for choosing appropriate transistor topology for use with transistor sizing is presented. In combinatorial blocks of static CMOS circuits transistor sizing can be applied for delay balancing in order to guarantee synchronously arriving signal slopes at the input of logic gates. Since the delay of a logic gate depends directly on transistor sizes, the variation of channel-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Low Power Electronics

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006