Finite-size scaling of directed percolation in the steady state.
نویسندگان
چکیده
Recently, considerable progress has been made in understanding finite-size scaling in equilibrium systems. Here, we study finite-size scaling in nonequilibrium systems at the instance of directed percolation (DP), which has become the paradigm of nonequilibrium phase transitions into absorbing states, above, at, and below the upper critical dimension. We investigate the finite-size scaling behavior of DP analytically and numerically by considering its steady state generated by a homogeneous constant external source on a d-dimensional hypercube of finite edge length L with periodic boundary conditions near the bulk critical point. In particular, we study the order parameter and its higher moments using renormalized field theory. We derive finite-size scaling forms of the moments in a one-loop calculation. Moreover, we introduce and calculate a ratio of the order parameter moments that plays a similar role in the analysis of finite size scaling in absorbing nonequilibrium processes as the famous Binder cumulant in equilibrium systems and that, in particular, provides a signature of the DP universality class. To complement our analytical work, we perform Monte Carlo simulations which confirm our analytical results.
منابع مشابه
M ay 2 00 5 Scaling behavior of the directed percolation
In this work we consider five different lattice models which exhibit continuous phase transitions into absorbing states. By measuring certain universal functions, which characterize the steady state as well as the dynamical scaling behavior, we present clear numerical evidence that all models belong to the universality class of directed percolation. Since the considered models are characterized...
متن کاملScaling behavior of the directed percolation universality class
In this work we consider five different lattice models which exhibit continuous phase transitions into absorbing states. By measuring certain universal functions, which characterize the steady state as well as the dynamical scaling behavior, we present clear numerical evidence that all models belong to the universality class of directed percolation. Since the considered models are characterized...
متن کاملJa n 20 05 Universal scaling behavior of non - equilibrium phase transitions Sven Lübeck
Non-equilibrium critical phenomena have attracted a lot of research interest in the recent decades. Similar to equilibrium critical phenomena, the concept of universality remains the major tool to order the great variety of non-equilibrium phase transitions systematically. All systems belonging to a given universality class share the same set of critical exponents, and certain scaling functions...
متن کاملUniversal scaling behavior of directed percolation around the upper critical dimension
In this work we consider the steady state scaling behavior of directed percolation around the upper critical dimension. In particular we determine numerically the order parameter, its fluctuations as well as the susceptibility as a function of the control parameter and the conjugated field. Additionally to the universal scaling functions, several universal amplitude combinations are considered....
متن کاملFinite-size scaling of directed percolation above the upper critical dimension.
We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the nonequilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2007