Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms.
نویسندگان
چکیده
Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several transcription factors, including oncogene products (e.g. c-Myc) and tumor suppressor gene products (e.g. WT1 and p53), are able to control hTERT transcription when over-expressed, although it remains to be determined whether a cancer-associated alteration of these factors is primarily responsible for the hTERT activation during carcinogenic processes. Microcell-mediated chromosome transfer experiments have provided evidence for endogenous factors that function to repress the telomerase activity in normal cells and are inactivated in cancer cells. At least one of those endogenous telomerase repressors, which is encoded by a putative tumor suppressor gene on chromosome 3p, acts through transcriptional repression of the hTERT gene. The hTERT gene is also a target site for viruses frequently associated with human cancers, such as human papillomavirus (HPV) and hepatitis B virus (HBV). HPV E6 protein contributes to keratinocyte immortalization and carcinogenesis through trans-activation of the hTERT gene transcription. In at least some hepatocellular carcinomas, the hTERT gene is a non-random integration site of HBV genome, which activates in cis the hTERT transcription. Thus, a variety of cellular and viral oncogenic mechanisms converge on transcriptional control of the hTERT gene. Regulation of chromatin structure through the modification of nucleosomal histones may mediate the action of these cellular and viral mechanisms. Further elucidation of the hTERT transcriptional regulation, including identification and characterization of the endogenous repressor proteins, should lead to better understanding of the complex regulation of human telomerase in normal and cancer cells and may open up new strategies for anticancer therapy.
منابع مشابه
Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells.
In mammals, molecular mechanisms and factors involved in the tight regulation of telomerase expression and activity are still largely undefined. In this study, we provide evidence for a role of estrogens and their receptors in the transcriptional regulation of hTERT, the catalytic subunit of human telomerase and, consequently, in the activation of the enzyme. Through a computer analysis of the ...
متن کاملاثر سایتوتوکسیک مهارکنندگان زیرواحد کاتالیتیکی (hTERT) و نوکلئوتیدی (hTERC) تلومراز در سلول های لوسمی پرومیلوسیتیک حاد
Background and purpose: Telomerase activity has a major role in acute promyelocytic leukemia (APL). It also has a critical role in disease recurrence. This research aimed at studying the cytotoxic effects of telomerase inhibition using oligonucleotide-based molecule against human telomerase RNA template (hTERC antisense) and non-nucleoside small molecule targeting catalytic subunit (BIBR5132) o...
متن کاملColony Forming Unit Endothelial Cells Do not Exhibit Telomerase Alternative Splicing Variants and Activity
Introduction: Endothelial progenitor colony forming unit-endothelial cells (CFU-EC) were first believed to be the progenitors of endothelial cells, named endothelial progenitor cells. Further studies revealed that they are monocytes regulating vasculogenesis. The main hindrance of these cells for therapeutic purposes is their low frequency and limited replicative potentials. This study was unde...
متن کاملMultiple Tumor Suppressor Pathways Negatively Regulate Telomerase
Telomerase expression is repressed in most somatic cells but is observed in stem cells and a high percentage of human cancers and has been hypothesized to contribute to tumorigenesis and maintenance of stem cell states. To explore telomerase regulation, we employed a general genetic screen to identify negative regulators of hTERT. We discovered three tumor suppressor/oncogene pathways involved ...
متن کاملLysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene
BACKGROUND Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2003