Verifying Properties of Binarized Deep Neural Networks
نویسندگان
چکیده
Understanding properties of deep neural networks is an important challenge in deep learning. In this paper, we take a step in this direction by proposing a rigorous way of verifying properties of a popular class of neural networks, Binarized Neural Networks, using the well-developed means of Boolean satisfiability. Our main contribution is a construction that creates a representation of a binarized neural network as a Boolean formula. Our encoding is the first exact Boolean representation of a deep neural network. Using this encoding, we leverage the power of modern SAT solvers along with a proposed counterexample-guided search procedure to verify various properties of these networks. A particular focus will be on the critical property of robustness to adversarial perturbations. For this property, our experimental results demonstrate that our approach scales to medium-size deep neural networks used in image classification tasks. To the best of our knowledge, this is the first work on verifying properties of deep neural networks using an exact Boolean encoding of the network.
منابع مشابه
Binarized Neural Networks
In this work we introduce a binarized deep neural network (BDNN) model. BDNNs are trained using a novel binarized back propagation algorithm (BBP), which uses binary weights and binary neurons during the forward and backward propagation, while retaining precision of the stored weights in which gradients are accumulated. At test phase, BDNNs are fully binarized and can be implemented in hardware...
متن کاملReluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). ...
متن کاملDesign Automation for Binarized Neural Networks: A Quantum Leap Opportunity?
Design automation in general, and in particular logic synthesis, can play a key role in enabling the design of application-specific Binarized Neural Networks (BNN). This paper presents the hardware design and synthesis of a purely combinational BNN for ultra-low power near-sensor processing. We leverage the major opportunities raised by BNN models, which consist mostly of logical bit-wise opera...
متن کاملPerformance Comparison of Binarized Neural Network with Convolutional Neural Network
Deep learning is a trending topic widely studied by researchers due to increase in the abundance of data and getting meaningful results with them. Convolutional Neural Networks (CNN) is one of the most popular architectures used in deep learning. Binarized Neural Network (BNN) is also a neural network which consists of binary weights and activations. Neural Networks has large number of paramete...
متن کاملDIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES
The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.06662 شماره
صفحات -
تاریخ انتشار 2017