Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest.
نویسندگان
چکیده
Tropical forests have high rates of soil carbon cycling, but little information is available on how roots, arbuscular mycorrhizal fungi (AMF), and free-living microorganisms interact and influence organic matter mineralization in these ecosystems. We used mesh ingrowth cores and isotopic tracers in phospholipid fatty acid biomarkers to investigate the effects of roots and AMF mycelia on (1) microbial community composition, microbial carbon utilization, and hydrolytic enzyme activities for large, potted tropical trees and (2) enzyme activities and litter mass loss in a lowland tropical forest. Under the tropical tree, plant-derived carbon was incorporated predominantly into bacterial groups in both rhizosphere and AMF-only soils. Gram-positive bacteria incorporated additional soil-derived carbon in rhizosphere soils, which also contained the highest microbial biomass. For hydrolytic enzymes, β-glucosidase and N-acetyl β-glucosaminidase activities were highest in rhizosphere soils, while phosphomonoesterase activity was highest in AMF-only soil. In the forest, leaf litter mass loss was increased by the presence of roots, but not by the presence of AMF mycelia only. Root-microbial interactions influenced organic matter cycling, with evidence for rhizosphere priming and accelerated leaf litter decomposition in the presence of roots. Although AMF mycelia alone did not stimulate organic matter mineralization, they were a conduit of carbon to other soil microorganisms.
منابع مشابه
Arbuscular mycorrhizal mycelial respiration in a moist tropical forest.
*Arbuscular mycorrhizal fungi (AMF) are widespread in tropical forests and represent a major sink of photosynthate, yet their contribution to soil respiration in such ecosystems remains unknown. *Using in-growth mesocosms we measured AMF mycelial respiration in two separate experiments: (1) an experiment in a semi-evergreen moist tropical forest, and (2) an experiment with 6-m-tall Pseudobombax...
متن کاملFine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances.
* It is commonly hypothesized that stand-level fine root biomass increases as soil fertility decreases both within and among tropical forests, but few data exist to test this prediction across broad geographic scales. This study investigated the relationships among fine roots, arbuscular mycorrhizal (AM) fungi and soil nutrients in four lowland, neotropical rainforests. * Within each forest, sa...
متن کاملInteractions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests.
Paradoxically, symbiotic dinitrogen (N2 ) fixers are abundant in nitrogen (N)-rich, phosphorus (P)-poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N-rich enzymes (phosphatases) that mineralise organic P than non-N2 fixers. We assessed soil and root phosphatase activity between fixers and non...
متن کاملInteractions between Soil Bacteria and Arbuscular Mycorrhizal Fungi
Toljander, J.F. 2006. Interactions between Soil Bacteria and Arbuscular Mycorrhizal Fungi. Doctoral dissertation. ISSN 1652-6880, ISBN 91-576-7088-9 The extraradical mycelium (ERM) of mycorrhizal fungi constitutes an important pathway for the translocation of energy-rich photoassimilates from plant to soil. Because of the large surface of the mycelium, and its provision of carbon, the ERM poten...
متن کاملIncreases in Soil Aggregation Following Phosphorus Additions in a Tropical Premontane Forest are Not Driven by Root and Arbuscular Mycorrhizal Fungal Abundances
Citation: Camenzind T, Papathanasiou HJ, Förster A, Dietrich K, Hertel D, Homeier J, Oelmann Y, Olsson PA, Suárez JP and Rillig MC (2016) Increases in Soil Aggregation Following Phosphorus Additions in a Tropical Premontane Forest are Not Driven by Root and Arbuscular Mycorrhizal Fungal Abundances. Front. Earth Sci. 3:89. doi: 10.3389/feart.2015.00089 Increases in Soil Aggregation Following Pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 85 1 شماره
صفحات -
تاریخ انتشار 2013