Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study
نویسندگان
چکیده
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention.SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool.
منابع مشابه
Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS
The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resona...
متن کاملPhase-Dependent Modulation of Signal Transmission in Cortical Networks through tACS-Induced Neural Oscillations
Oscillatory neural activity is considered a basis of signal transmission in brain networks. However, the causal role of neural oscillations in regulating cortico-cortical signal transmission has so far not been directly demonstrated. To date, due to methodological limitations, studies on the online modulatory mechanisms of transcranial alternating current stimulation (tACS)-induced neural oscil...
متن کاملTranscranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex
Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements....
متن کاملState-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that ...
متن کاملCombining TMS and tACS for Closed-Loop Phase-Dependent Modulation of Corticospinal Excitability: A Feasibility Study
BACKGROUND The corticospinal excitability indexed by motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) of the sensorimotor cortex is characterized by large variability. The instantaneous phase of cortical oscillations at the time of the stimulation has been suggested as a possible source of this variability. To explore this hypothesis, a specific phase needs to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 37 شماره
صفحات -
تاریخ انتشار 2017