The bZIP Protein MeaB Mediates Virulence Attributes in Aspergillus flavus
نویسندگان
چکیده
LaeA is a fungal specific virulence factor of both plant and human pathogenic fungi. Transcriptional profiles of laeA mutants have been successfully exploited to identify regulatory mechanisms of secondary metabolism in fungi; here we use laeA mutants as tools to elucidate virulence attributes in Aspergillus flavus. Microarray expression profiles of ΔlaeA and over-expression laeA (OE::laeA) were compared to wild type A. flavus. Strikingly, several nitrogen metabolism genes are oppositely mis-regulated in the ΔlaeA and OE::laeA mutants. One of the nitrogen regulatory genes, the bZIP encoding meaB, is up-regulated in ΔlaeA. Significantly, over-expression of meaB (OE::meaB) phenocopies the decreased virulence attributes of a ΔlaeA phenotype including decreased colonization of host seed, reduced lipase activity and loss of aflatoxin B1 production in seed. However, a double knock-down of laeA and meaB (KD::laeA,meaB) demonstrated that KD::laeA,meaB closely resembled ΔlaeA rather than wild type or ΔmeaB in growth, aflatoxin biosynthesis and sclerotia production thus suggesting that meaB does not contribute to the ΔlaeA phenotype. MeaB and LaeA appear to be part of regulatory networks that allow them to have both shared and distinct roles in fungal biology.
منابع مشابه
A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB C W
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions a...
متن کاملA nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB.
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions a...
متن کاملAn opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in virulence in Drosophila melanogaster.
Aspergilloses are fungal diseases in humans and animals that is caused by members of the genus Aspergillus. Aspergillus flavus is an important opportunistic pathogen, second only to A. fumigatus as a cause of human aspergillosis. Differences in virulence among A. flavus isolates from clinical and other substrates and mating types are not well known. The fruit fly Drosophila melanogaster has bec...
متن کاملThe Putative Histone Methyltransferase DOT1 Regulates Aflatoxin and Pathogenicity Attributes in Aspergillus flavus
Lysine methyltransferases transfer methyl groups in specific lysine sites, which regulates a variety of important biological processes in eukaryotes. In this study, we characterized a novel homolog of the yeast methyltransferase DOT1 in A. flavus, and observed the roles of dot1 in A. flavus. Deletion of dot1 showed a significant decrease in conidiation, but an increase in sclerotia formation. A...
متن کاملDifferences in pathogenicity and clinical syndromes due to Aspergillus fumigatus and Aspergillus flavus.
Most of the information available about Aspergillus infections has originated from the study of A. fumigatus, the most frequent species in the genus. This review aims to compare the pathogenicity and clinical aspects of Aspergillosis caused by A. fumigatus an A. flavus. Experimental data suggests that A. flavus is more virulent than A. fumigatus. However, these were mostly models of disseminate...
متن کامل