Enhancing Ensemble Performance through Feature Selection and Hybridization

نویسندگان

  • Sahand Khakabimamaghani
  • Farnaz Barzinpour
  • Mohammad R. Gholamian
چکیده

Ensemble has been proved a successful approach for enhancing the performance of a single classifier. But there are two key factors directly influencing the outcomes of an ensemble: accuracy of each single member and diversity between the members. There have been many approaches used in the literature to create the mentioned diversity. In this paper, we add to them a novel approach, in which classifier type variance is utilized along with feature subset diversification to create a high diversity ensemble of different classifiers and the ensemble is optimized using a multi-objective evolutionary algorithm. The suggested approach outperformed existing ones in experiments conducted on some standard datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه در پیش‌بینی بازده سهام

مقاله حاضر به بررسی سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیش‌بینی بازده سهام شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران می‌پردازد. به‌منظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیش‌بینی این روش، با رگرسیون خطی و شبکه‌های عصبی مصنوعی...

متن کامل

A New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)

Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...

متن کامل

Co-Regularized Ensemble for Feature Selection

Supervised feature selection determines feature relevance by evaluating feature’s correlation with the classes. Joint minimization of a classifier’s loss function and an `2,1-norm regularization has been shown to be effective for feature selection. However, the appropriate feature subset learned from different classifiers’ loss function may be different. Less effort has been made on improving t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011