Mechanistic Studies of Two Selected Flavin-Dependent Enzymes: Choline Oxidase and D-Arginine Dehydrogenase
نویسندگان
چکیده
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine via the formation of an aldehyde intermediate. The oxidation of choline includes two reductive half-reactions followed by oxidative half-reactions. In the first oxidation reaction, the alcohol substrate is activated to its alkoxide via proton abstraction and oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wildtype enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. The role of Ser101 was investigated in this dissertation. Replacement of Ser101 with threonine, alanine, cysteine, or valine demonstrated the importance of the hydroxyl group of Ser101 in proton abstraction and in hydride transfer. Moreover, the kinetic studies on the Ser101Ala variant have revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase. The UV-visbible absorbance of Ser101Cys suggests Cys101 can form an adduct with the C4a atom of the flavin. The mechanism of formation of the C4acysteinyl adduct has been elucidated. D-arginine dehydrogenase (DADH) catalyzes the oxidation of D-amino acids to the corresponding imino acids, which are non-enzymatically hydrolyzed to α-keto acids and ammonia. The enzyme is strick dehrogenase and deoesnot react with molecular oxygen. Steady state kinetic studies wirh D-arginine and D-histidine as a substrate and PMS as the electron acceptor has been investigated. The enzyme has broad substrate specificity for D-amino acids except aspartate, glutamate and glycine, with preference for arginine and lysine. Leucine is the slowest substrate in which steady state kinetic parameters can be obtained. The chemical mechanism of leucine dehydrogenation catalyzed by DADH was explored with a combination of pH, substrate and solvent kinetic isotope effects (KIE) and proton inventories by using rapid kinetics in a stopped-flow spectrophotometer. The data are discussed in the context of the crystallographic structures at high resolutions (<1.3 Å) of the enzyme in complex with iminoarginine or iminohistidine. INDEX WORDS: Choline oxidase, Hydroxyl group, C4a-cysteinyl adduct, D-arginine dehydrogenase, Conformational change, Hydride transfer MECHANISTIC STUDIES OF TWO SELECTED FLAVIN-DEPENDENT ENZYMES: CHOLINE OXIDASE AND D-ARGININE DEHYDROGENASE
منابع مشابه
Mechanistic Enzymology of Flavin-dependent Catalysis in Bacterial D-Arginine Dehydrogenase and Choline Oxidase
D-Arginine dehydrogenase (DADH) catalyzes the oxidation of D-arginine to imino arginine using FAD as the cofactor. The enzyme is part of a recently discovered two-enzyme complex from Pseudomonas aeruginosa involved in arginine utilization. Function of the enzyme within the organism is unknown. Work on this enzyme has been undertaken to understand the structure as well as its reaction mechanism ...
متن کاملKinetic and Structural Studies on Flavin-dependent Enzymes involved in Glycine Betaine Biosynthesis and Propionate 3-nitronate Detoxification
Flavin-dependent enzymes are characterized by an amazing chemical versatility and play important roles in different cellular pathways. The FAD-containing choline oxidase from Arthrobacter globiformis oxidizes choline to glycine betaine and retains the intermediate betaine aldehyde in the active site. The reduced FAD is oxidized by oxygen. Glycine betaine is an important osmoprotectant accumulat...
متن کاملConvenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes
Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors ...
متن کاملBiochemical and Mechanistic Studies of Nitronate Monooxygenase and Roles of Histidine Residues in Select Flavoprotein Oxidases
Nitronate monooxygenase (NMO) catalyzes the flavin-dependent oxidation of propionate 3-nitronate (P3N) via the formation of an anionic flavosemiquinone. The oxidation of substrate includes the formation of a peroxy-nitro acid intermediate. P3N is activated to its radical form via a single electron transfer onto the FMN cofactor forming the anionic flavosemiquinone. Reoxidation of FMN cofactor f...
متن کاملStereochemistry and accessibility of prosthetic groups in flavoproteins.
Using 8-demethyl-8-hydroxy-5-deaza-5-carba analogues of the appropriate flavin nucleotides, we determined the stereochemistry of interaction between coenzyme and substrate for several flavoproteins. The enzymes were D-amino acid oxidase, L-lactate oxidase, and D-lactate dehydrogenase, all three of which interact with pyruvate, as well as cyclohexanone monooxygenase and 2-methyl-3-hydroxypyridin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015