Timing Specific Requirement of microRNA Function is Essential for Embryonic and Postnatal Hippocampal Development

نویسندگان

  • Qingsong Li
  • Shan Bian
  • Janet Hong
  • Yoko Kawase-Koga
  • Edwin Zhu
  • Yongri Zheng
  • Lizhuang Yang
  • Tao Sun
چکیده

The adult hippocampus consists of the dentate gyrus (DG) and the CA1, CA2 and CA3 regions and is essential for learning and memory functions. During embryonic development, hippocampal neurons are derived from hippocampal neuroepithelial cells and dentate granular progenitors. The molecular mechanisms that control hippocampal progenitor proliferation and differentiation are not well understood. Here we show that noncoding microRNAs (miRNAs) are essential for early hippocampal development in mice. Conditionally ablating the RNAase III enzyme Dicer at different embryonic time points utilizing three Cre mouse lines causes abnormal hippocampal morphology and affects the number of hippocampal progenitors due to altered proliferation and increased apoptosis. Lack of miRNAs at earlier stages causes early differentiation of hippocampal neurons, in particular in the CA1 and DG regions. Lack of miRNAs at a later stage specifically affects neuronal production in the CA3 region. Our results reveal a timing requirement of miRNAs for the formation of specific hippocampal regions, with the CA1 and DG developmentally hindered by an early loss of miRNAs and the CA3 region to a late loss of miRNAs. Collectively, our studies indicate the importance of the Dicer-mediated miRNA pathway in hippocampal development and functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

chHDAC11 mRNA Expression During Prenatal and Postnatal Chicken (Gallus gallus) Brain Development

Background: Histone deacetylation plays an essential role in transcriptional regulation of cell cycle progression and other evolutionary processes. Several results confirm the importance of the latest found HDAC11 gene to deacetylate histone core in neurons and their supportive cells in developing the vertebrate Central Nervous System (CNS).  Objectives: This study investigates the HDAC11 pote...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Lin41/Trim71 is essential for mouse development and specifically expressed in postnatal ependymal cells of the brain

Lin41/Trim71 is a heterochronic gene encoding a member of the Trim-NHL protein family, and is the original, genetically defined target of the microRNA let-7 in C. elegans. Both the LIN41 protein and multiple regulatory microRNA binding sites in the 3' UTR of the mRNA are highly conserved from nematodes to humans. Functional studies have described essential roles for mouse LIN41 in embryonic ste...

متن کامل

Immunohistochmistry Study of Collagen IV Changes in Glomerular Basement Memebrane During Fetal and Postnatal Periods of Balb/c Mice

Purpose: In this investigation specific antibody type IV collagen has been used in light microscopy to study development of BMG of the embryonic and postnatal mouse glomerular mesangium. Materials and Methods:20 female Balb/C mice were selected randomly and were kept under normal condition, finding vaginal plug was assumed as day zero of pregnancy. 12 pregnant mice were scarified by cervical di...

متن کامل

O-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte

Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011