The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells
نویسندگان
چکیده
Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon oxide (SiOx:H) interlayers with different metals (silver, aluminium, and chromium) in standard p-i-n a-Si:H solar cells. We use a unique inverse modeling approach to show that in most back reflectors the internal metal reflectance is lower than expected theoretically. However, the metal reflectance is increased by the addition of an oxide interlayer. Our experiments demonstrate that SiOx:H forms an interesting alternative interlayer because unlike the more commonly used ZnO:Al it can be deposited by plasma-enhanced chemical vapour deposition and it does not reduce the fill factor. The largest efficiency enhancement is obtained with a double interlayer of SiOx:H and ZnO:Al. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790875]
منابع مشابه
Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells
Related Articles Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells Appl. Phys. Lett. 102, 093107 (2013) Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells Appl. Phys. Lett. 102, 083501 (2013) Spatially resolved electrical parameters of silicon wa...
متن کاملHybrid Dielectric-Metallic Back Reflector for Amorphous Silicon Solar Cells
In this paper, we present the design and fabrication of hybrid dielectric-metallic back surface reflectors, for applications in thin film amorphous silicon solar cells. Standard multilayer distributed Bragg reflectors, require a large number of layers in order to achieve high reflectance characteristics. As it turns out, the addition of a metallic layer, to the base of such a multilayer mirror,...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملDistributed Reflector Structure and Diffraction Grating Structure in the Solar Cell
Today, due to qualitative growth and scientific advances, energy, especially electricity is increasingly needed by human society. One of the almost endless and pure energy which have been paid attention over the years is the solar energy. Solar cells directly convert solar energy into electrical energy and are one of the main blocks of photovoltaic systems. Significant improvement has been made...
متن کاملPhotonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment
One of the foremost challenges in designing thin-film silicon solar cells (TFSC) is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption...
متن کامل