Mechanism of the Voltage Sensitivity of IRK1 Inward-rectifier K+ Channel Block by the Polyamine Spermine
نویسندگان
چکیده
IRK1 (Kir2.1) inward-rectifier K+ channels exhibit exceedingly steep rectification, which reflects strong voltage dependence of channel block by intracellular cations such as the polyamine spermine. On the basis of studies of IRK1 block by various amine blockers, it was proposed that the observed voltage dependence (valence approximately 5) of IRK1 block by spermine results primarily from K+ ions, not spermine itself, traversing the transmembrane electrical field that drops mostly across the narrow ion selectivity filter, as spermine and K+ ions displace one another during channel block and unblock. If indeed spermine itself only rarely penetrates deep into the ion selectivity filter, then a long blocker with head groups much wider than the selectivity filter should exhibit comparably strong voltage dependence. We confirm here that channel block by two molecules of comparable length, decane-bis-trimethylammonium (bis-QA(C10)) and spermine, exhibit practically identical overall voltage dependence even though the head groups of the former are much wider ( approximately 6 A) than the ion selectivity filter ( approximately 3 A). For both blockers, the overall equilibrium dissociation constant differs from the ratio of apparent rate constants of channel unblock and block. Also, although steady-state IRK1 block by both cations is strongly voltage dependent, their apparent channel-blocking rate constant exhibits minimal voltage dependence, which suggests that the pore becomes blocked as soon as the blocker encounters the innermost K+ ion. These findings strongly suggest the existence of at least two (potentially identifiable) sequentially related blocked states with increasing numbers of K+ ions displaced. Consequently, the steady-state voltage dependence of IRK1 block by spermine or bis-QA(C10) should increase with membrane depolarization, a prediction indeed observed. Further kinetic analysis identifies two blocked states, and shows that most of the observed steady-state voltage dependence is associated with the transition between blocked states, consistent with the view that the mutual displacement of blocker and K+ ions must occur mainly as the blocker travels along the long inner pore.
منابع مشابه
Mechanism of Irk1 Channel Block by Intracellular Polyamines
Intracellular polyamines inhibit the strongly rectifying IRK1 potassium channel by a mechanism different from that of a typical ionic pore blocker such as tetraethylammonium. As in other K(+) channels, in the presence of intracellular TEA, the IRK1 channel current decreases with increasing membrane voltage and eventually approaches zero. However, in the presence of intracellular polyamines, the...
متن کاملTime-dependent Outward Currents through the Inward Rectifier Potassium Channel IRK1
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines rem...
متن کاملInteraction Mechanisms between Polyamines and IRK1 Inward Rectifier K+ Channels
Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding-unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for ...
متن کاملStrong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine
Inward rectifier K+ channels mediate the K+ conductance at resting potential in many types of cell. Since these K+ channels do not pass outward currents (inward rectification) when the cell membrane is depolarized beyond a trigger threshold, they play an important role in controlling excitability. Both a highly voltage-dependent block by intracellular Mg2+ and an endogenous gating process are p...
متن کاملEvidence for Sequential Ion-binding Loci along the Inner Pore of the IRK1 Inward-rectifier K+ Channel
Steep rectification in IRK1 (Kir2.1) inward-rectifier K(+) channels reflects strong voltage dependence (valence of approximately 5) of channel block by intracellular cationic blockers such as the polyamine spermine. The observed voltage dependence primarily results from displacement, by spermine, of up to five K(+) ions across the narrow K(+) selectivity filter, along which the transmembrane vo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 125 شماره
صفحات -
تاریخ انتشار 2005