Tests for High-Dimensional Covariance Matrices
نویسندگان
چکیده
We propose tests for sphericity and identity of high-dimensional covariance matrices. The tests are nonparametric without assuming a specific parametric distribution for the data. They can accommodate situations where the data dimension is much larger than the sample size, namely the “large p, small n” situations. We demonstrate by both theoretical and empirical studies that the tests have good properties for a wide range of dimensions and sample sizes. We applied the proposed test on a microarray dataset on Yorkshire Gilts and tested for the covariance structure for the expression levels for sets of genes.
منابع مشابه
Two Sample Tests for High - Dimensional Covariance Matrices
We propose two tests for the equality of covariance matrices between two high-dimensional populations. One test is on the whole variance–covariance matrices, and the other is on off-diagonal sub-matrices, which define the covariance between two nonoverlapping segments of the high-dimensional random vectors. The tests are applicable (i) when the data dimension is much larger than the sample size...
متن کاملMore powerful tests for sparse high-dimensional covariances matrices
This paper considers improving the power of tests for the identity and sphericity hypotheses regarding high dimensional covariance matrices. The power improvement is achieved by employing the banding estimator for the covariance matrices, which leads to significant reduction in the variance of the test statistics in high dimension. Theoretical justification and simulation experiments are provid...
متن کاملError bounds for high–dimensional Edgeworth expansions for some tests on covariance matrices
Problems of testing three hypotheses : (i) equality of covariance matrices of several multivariate normal populations, (ii) sphericity, and (iii) that a covariance matrix is equal to a specified one, are treated. High–dimensional Edgeworth expansions of the null distributions of the modified likelihood ratio test statistics are derived. Computable error bounds of the expansions are derived for ...
متن کاملCorrections to LRT on Large Dimensional Covariance Matrix by RMT
Abstract: In this paper, we give an explanation to the failure of two likelihood ratio procedures for testing about covariance matrices from Gaussian populations when the dimension is large compared to the sample size. Next, using recent central limit theorems for linear spectral statistics of sample covariance matrices and of random F-matrices, we propose necessary corrections for these LR tes...
متن کاملInformation Covariance Matrices for Multivariate Burr III and Logistic Distributions
Main result of this paper is to derive the exact analytical expressions of information and covariance matrices for multivariate Burr III and logistic distributions. These distributions arise as tractable parametric models in price and income distributions, reliability, economics, Human population, some biological organisms to model agricultural population data and survival data. We showed that ...
متن کامل