Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus
نویسندگان
چکیده
Calcium (Ca2+) is an essential second messenger required for diverse signaling processes in immune cells. Ca2+ release-activated Ca2+ (CRAC) channels represent one main Ca2+ entry pathway into the cell. They are fully reconstituted via two proteins, the stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, and the Ca2+ ion channel Orai in the plasma membrane. After Ca2+ store depletion, STIM1 and Orai couple to each other, allowing Ca2+ influx. CRAC-/STIM1-mediated Orai channel currents display characteristic hallmarks such as high Ca2+ selectivity, an increase in current density when switching from a Ca2+-containing solution to a divalent-free Na+ one, and fast Ca2+-dependent inactivation. Here, we discovered several constitutively active Orai1 and Orai3 mutants, containing substitutions in the TM3 and/or TM4 regions, all of which displayed a loss of the typical CRAC channel hallmarks. Restoring authentic CRAC channel activity required both the presence of STIM1 and the conserved Orai N-terminal portion. Similarly, these structural requisites were found in store-operated Orai channels. Key molecular determinants within the Orai N terminus that together with STIM1 maintained the typical CRAC channel hallmarks were distinct from those that controlled store-dependent Orai activation. In conclusion, the conserved portion of the Orai N terminus is essential for STIM1, as it fine-tunes the open Orai channel gating, thereby establishing authentic CRAC channel activity.
منابع مشابه
Communication between N terminus and loop2 tunes Orai activation
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Ora...
متن کاملThe action of selective CRAC channel blockers is affected by the Orai pore geometry
As the molecular composition of calcium-release activated calcium (CRAC) channels has been unknown for two decades, elucidation of selective inhibitors has been considerably hampered. By the identification of the two key components of CRAC channels, STIM1 and Orai1 have emerged as promising targets for CRAC blockers. The aim of this study was to thoroughly characterize the effects of two select...
متن کاملA plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclu...
متن کاملMolecular Determinants within N Terminus of Orai3 Protein That Control Channel Activation and Gating*
STIM1 and Orai represent the key components of Ca(2+) release-activated Ca(2+) channels. Activation of Orai channels requires coupling of the C terminus of STIM1 to the N and C termini of Orai. Although the latter appears to be central in the interaction with STIM1, the role of the N terminus and particularly of the conserved region close to the first transmembrane sequence is less well underst...
متن کاملConformational Changes in the Orai1 C-Terminus Evoked by STIM1 Binding
Store-operated CRAC channels regulate a wide range of cellular functions including gene expression, chemotaxis, and proliferation. CRAC channels consist of two components: the Orai proteins (Orai1-3), which form the ion-selective pore, and STIM proteins (STIM1-2), which form the endoplasmic reticulum (ER) Ca2+ sensors. Activation of CRAC channels is initiated by the migration of STIM1 to the ER...
متن کامل