Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process.
نویسندگان
چکیده
Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of k(L)a, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-intensity mixing). Conversely, the limitation is important for poorly soluble gases, such as methane and hydrogen. The latter could be overconcentrated to as much as 80 times the value at thermodynamic equilibrium. Such overconcentrations bring into question the biological interpretations that have been deduced solely from gaseous measurements. Experimental results obtained in three different methanogenic reactors for a wide range of conditions of mixing and gas production confirmed the general existence of low mass transfer coefficients and consequently of large overconcentrations of dissolved methane and hydrogen (up to 12 and 70 times the equilibrium values, respectively). Hydrogen mass transfer coefficients were obtained from the direct measurements of dissolved and gaseous concentrations, while carbon dioxide coefficients were calculated from gas phase composition and calculation of related dissolved concentration. Methane transfer coefficients were based on calculations from the carbon dioxide coefficients. From mass balances performed on a gas bubble during its simulated growth and ascent to the surface of the liquid, the methane and carbon dioxide contents in the gas bubble appeared to be controlled by the bubble growth process, while the bubble ascent was largely responsible for a slight enrichment in hydrogen.
منابع مشابه
Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process
Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of kLa, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-intensi...
متن کاملPerformance of Biological hydrogen Production Process from Synthesis Gas, Mass Transfer in Batch and Continuous Bioreactors
Biological hydrogen production by anaerobic bacterium, Rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas (CO) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the con...
متن کاملKinetics of Propane Hydrate Formation in Agitated Reactor: A Mass Transfer Approach
Understanding the kinetics of gas hydrate formation is essential to model and predict the hydrate formation (or dissociation) process. In the present paper, we investigated the formation of pure propane gas hydrate as a former gas. In this regard, several experiments were conducted to measure the rate of hydrate formation under various pressures (410 to 510 kPa) and temperatures (274 K to 277 K...
متن کاملComparison of Different Loop Bioreactors Based on Hydrodynamic Characteristics, Mass Transfer, Energy Consumption and Biomass Production from Natural Gas
The performance of a forced-liquid Vertical Tubular Loop Bioreactor (VTLB), a forced-liquid Horizontal Tubular Loop Bioreactor (HTLB) and a gas-induced External Airlift Loop Bioreactor (EALB) were compared for production of biomass from natural gas. Hydrodynamic characteristics and mass transfer coefficients were determined as functions of design parameters, physical properties of gases as ...
متن کاملStudy on Mass Transfer Enhancement in a Gas-Liquid System Using Nanomaterials
The main objective of this paper is to examine the effect of nanomaterials on mass transfer coefficient in bubble type absorption of carbon dioxide by experiment. The absorption process is carried out in a bubble column and in room temperature. Mass transfer coefficient, saturated concentration of CO2, and gas holdup are determined in this system. The kinds of nanomaterials, the concentrations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 56 6 شماره
صفحات -
تاریخ انتشار 1990