Organic electrode coatings for next-generation neural interfaces

نویسندگان

  • Ulises A. Aregueta-Robles
  • Andrew J. Woolley
  • Laura A. Poole-Warren
  • Nigel H. Lovell
  • Rylie A. Green
چکیده

Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gellan gum doped polypyrrole neural prosthetic electrode coatings

Surface modification of neural prosthetic electrodes with polymeric materials, in particular, conducting polymers and hydrogels, has the potential to circumvent many problems associated with currently used electrode platforms. These problems include the disparity in mechanical properties between implanted electrodes and host neural tissue and the lack of biofunctionality at the electrode surfac...

متن کامل

Light Manipulation in Organic Photovoltaics

Organic photovoltaics (OPVs) hold great promise for next-generation photovoltaics in renewable energy because of the potential to realize low-cost mass production via large-area roll-to-roll printing technologies on flexible substrates. To achieve high-efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility...

متن کامل

Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces.

Microelectrodes provide a direct pathway to investigate brain activities electrically from the external world, which has advanced our fundamental understanding of brain functions and has been utilized for rehabilitative applications as brain-machine interfaces. However, minimizing the tissue response and prolonging the functional durations of these devices remain challenging. Therefore, the dev...

متن کامل

Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication

The acquisition of high-fidelity, long-term neural recordings in vivo is critically important to advance neuroscience and brain–machine interfaces. For decades, rigid materials such as metal microwires and micromachined silicon shanks were used as invasive electrophysiological interfaces to neurons, providing either single or multiple electrode recording sites. Extensive research has revealed t...

متن کامل

Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article

The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014