Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis.
نویسندگان
چکیده
Peptidyl Met residues are readily oxidized by reactive oxygen species to form Met sulfoxide. The enzyme peptide Met sulfoxide reductase (PMSR) catalyzes the reduction of Met sulfoxides back to Met. In doing so, PMSR is proposed to act as a last-chance antioxidant, repairing proteins damaged from oxidative stress. To assess the role of this enzyme in plants, we generated multiple transgenic lines with altered expression levels of the plastid form of PMSR (PMSR4). In transgenic plants, PMSR4 expression ranged from 95% to 40% (antisense) and more than 600% (overexpressing lines) of wild-type plants. Under optimal growing conditions, there is no effect of the transgene on the phenotype of the plants. When exposed to different oxidative stress conditions-methyl viologen, ozone, and high light-differences were observed in the rate of photosynthesis, the maximum quantum yield (Fv/Fm ratio), and the Met sulfoxide content of the isolated chloroplast. Plants that overexpressed PMSR4 were more resistant to oxidative damage localized in the chloroplast, and plants that underexpressed PMSR4 were more susceptible. The Met sulfoxide levels in proteins of the soluble fraction of chloroplasts were increased by methyl viologen and ozone, but not by high-light treatment. Under stress conditions, the overexpression of PMSR4 lowered the sulfoxide content and underexpression resulted in an overall increase in content.
منابع مشابه
Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis.
We report the characterization of two members of a gene family from Arabidopsis that encode, respectively, cytosolic (cPMSR) and plastid-targeted (pPMSR) isoforms of the oxidative-stress-repair enzyme peptide methionine sulfoxide reductase. Overexpression of these proteins in Escherichia coli confirmed that each had PMSR enzyme activity with a synthetic substrate, N-acetyl-[(3)H]-methionine sul...
متن کاملThe Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress.
Two types of methionine (Met) sulfoxide reductases (Msr) catalyze the reduction of Met sulfoxide (MetSO) back to Met. MsrA, well characterized in plants, exhibits an activity restricted to the Met-S-SO-enantiomer. Recently, a new type of Msr enzyme, called MsrB, has been identified in various organisms and shown to catalytically reduce the R-enantiomer of MetSO. In plants, very little informati...
متن کاملArabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress.
Excess reactive oxygen species (ROS) accumulation under various environmental stresses can damage intracellular polysaccharides, DNA, lipids and proteins. Methionine sulfoxide reductase (MSR) participates in a protein repair system that is one of the defensive mechanisms that diminishes oxidative destruction. In Arabidopsis, cytosolic MsrB7 and MsrB8 are oxidative stress-inducible protein repai...
متن کاملMethionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the f...
متن کاملArabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights.
Peptide methionine sulfoxide reductase (PMSR) is a ubiquitous enzyme that repairs oxidatively damaged proteins. In Arabidopsis (Arabidopsis thaliana), a null mutation in PMSR2 (pmsr2-1), encoding a cytosolic isoform of the enzyme, exhibited reduced growth in short-day conditions. In wild-type plants, a diurnally regulated peak of total PMSR activity occurred at the end of the 16-h dark period t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2004