Dynamics of microvortices induced by ion concentration polarization.
نویسندگان
چکیده
We investigate the coupled dynamics of the local hydrodynamics and global electric response of an electrodialysis system, which consists of an electrolyte solution adjacent to a charge selective membrane under electric forcing. Under a dc electric current, counterions transport through the charged membrane while the passage of co-ions is restricted, thereby developing ion concentration polarization (ICP) or gradients. At sufficiently large currents, simultaneous measurements of voltage drop and flow field reveal several distinct dynamic regimes. Initially, the electrodialysis system displays a steady Ohmic voltage difference (ΔV_{ohm}), followed by a constant voltage jump (ΔV_{c}). Immediately after this voltage increase, microvortices set in and grow both in size and speed with time. After this growth, the resultant voltage levels off around a fixed value. The average vortex size and speed stabilize as well, while the individual vortices become unsteady and dynamic. These quantitative results reveal that microvortices set in with an excess voltage drop (above ΔV_{ohm}+ΔV_{c}) and sustain an approximately constant electrical conductivity, destroying the initial ICP with significantly low viscous dissipation.
منابع مشابه
Confined Electroconvective Vortices at Structured Ion Exchange Membranes
In this paper, we investigate electroconvective ion transport at cation exchange membranes with different geometry square-wave structures (line undulations) experimentally and numerically. Electroconvective microvortices are induced by strong concentration polarization once a threshold potential difference is applied. The applied potential required to start and sustain electroconvection is stro...
متن کاملApplication of the concentration- area method to separate induced polarization anomalies data against classical statistics: A case study of Hamyj Porphyry Copper Deposit; Iran
متن کامل
Modeling of Nanofiltration of Low Concentration Pb(II) Aqueous Solutions Using a Coupled Concentration Polarization and Pore Flow Model
In this paper, the performance of nanofiltration membrane process in removing Pb(II) from aqueous solution was modeled by the pore flow-concentration polarization model. The model was fabricated based on the simultaneous resolving of Extended Nernst–Planck equation(ENP), film theory, and osmotic pressure model. The effects of various operational parameters such as the applied pressure, feed con...
متن کاملThe Effect of Chloride Ions Concentration on the Electrochemical Behavior of AISI 410 Stainless Steels in Simulated Concrete Pore Solution
The effect of chloride ions concentration on the electrochemical behavior of AISI 410 stainless steel in the simulated concrete pore (0.1 M NaOH + 0.1 M KOH) solution was investigated by various electrochemical methods such as Potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves revealed that increasing chlori...
متن کاملEnhanced size-dependent trapping of particles using microvortices.
Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2015