TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Additive Approximations of Pareto-Optimal Sets by Evolutionary Multi-Objective Algorithms

نویسندگان

  • Christian Horoba
  • Frank Neumann
چکیده

Often the Pareto front of a multi-objective optimization problem grows exponentially with the problem size. In this case, it is not possible to compute the whole Pareto front efficiently and one is interested in good approximations. We consider how evolutionary algorithms can achieve such approximations by using different diversity mechanisms. We discuss some well-known approaches such as the density estimator and the ε-dominance approach and point out how and when such mechanisms provably help to obtain good additive approximations of the Pareto-optimal set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Approximating Minimum Multicuts by Evolutionary Multi-Objective Algorithms

It has been shown that simple evolutionary algorithms are able to solve the minimum cut problem in expected polynomial time when using a multi-objective model of the problem. In this paper, we generalize these ideas to the NP-hard minimum multicut problem. Given a set of k terminal pairs, we prove that evolutionary algorithms in combination with a multi-objective model of the problem are able t...

متن کامل

TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Theoretical Analysis of Diversity Mechanisms for Global Exploration

Maintaining diversity is important for the performance of evolutionary algorithms. Diversity mechanisms can enhance global exploration of the search space and enable crossover to find dissimilar individuals for recombination. We focus on the global exploration capabilities of mutation-based algorithms. Using a simple bimodal test function and rigorous runtime analyses, we compare well-known div...

متن کامل

TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A ...

متن کامل

TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Analysis of a Simple Evolutionary Algorithm for the Multiobjective Shortest Path Problem

We present a natural fitness function f for the multiobjective shortest path problem, which is a fundamental multiobjective combinatorial optimization problem known to be NP-hard. Thereafter, we conduct a rigorous runtime analysis of a simple evolutionary algorithm (EA) optimizing f . Interestingly, this simple general algorithm is a fully polynomial-time randomized approximation scheme (FPRAS)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008