M ar 1 99 9 “ Nonlinear ” covariance matrix and portfolio theory for non - Gaussian multivariate distributions ∗

نویسندگان

  • D. Sornette
  • P. Simonetti
  • J. V. Andersen
چکیده

This paper offers a precise analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a non-linear fractional covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good-conditionning. The portfolio distribution is obtained as the solution of a mapping to a so-called φ q field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The main result of our theory is that minimizing the portfolio variance (i.e. the relatively " small " risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive empirical tests are presented on the foreign exchange market that validate satisfactorily the theory. For " fat tail " distributions, we show that an adequete prediction of the risks of a portfolio relies much more on the correct description of the tail structure rather than on their correlations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tail Mean-Variance Model and Extended Efficient Frontier

In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...

متن کامل

Information and Covariance Matrices for Multivariate Pareto (IV), Burr, and Related Distributions

Main result of this paper is to derive the exact analytical expressions of information and covariance matrix for multivariate Pareto, Burr and related distributions. These distributions arise as tractable parametric models in reliability, actuarial science, economics, finance and telecommunications. We showed that all the calculations can be obtained from one main moment multidimensional integr...

متن کامل

COVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS

Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...

متن کامل

Segmentation analysis on a multivariate time series of the foreign exchange rates

This study considers the multivariate segmentation procedure under the assumption of the multivariate Gaussian mixture. Jensen-Shannon divergence between two multivariate Gaussian distributions is employed as a discriminator and a recursive segmentation procedure is proposed. The daily log-return time series for 30 currency pairs consisting of 12 currencies for the last decade (January 3, 2001 ...

متن کامل

2 00 1 General framework for a portfolio theory with non - Gaussian risks and non - linear correlations

Using a family of modified Weibull distributions, encompassing both sub-exponentials and super-exponentials, to parameterize the marginal distributions of asset returns and their natural multivariate generalizations, we give exact formulas for the tails and for the moments and cumulants of the distribution of returns of a portfolio make of arbitrary compositions of these assets. Using combinato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998