Fundamental Locally One-Dimensional Method for 3-D Thermal Simulation

نویسندگان

  • Wei Choon Tay
  • Eng Leong Tan
  • Ding Yu Heh
چکیده

(2014). Fundamental locally one-dimensional method for 3-D thermal simulation. IEICE transactions on electronics, E97.C(7), 636-644. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. SUMMARY This paper presents a fundamental locally one-dimensional (FLOD) method for 3-D thermal simulation. We first propose a locally one-dimensional (LOD) method for heat transfer equation within general inhomogeneous media. The proposed LOD method is then cast into compact form and formulated into the FLOD method with operator-free right-hand-side (RHS), which leads to computationally efficient update equations. Memory storage requirements and boundary conditions for both FLOD and LOD methods are detailed and compared. Stability analysis by means of analyzing the eigenvalues of amplification matrix substantiates the stability of the FLOD method. Additionally, the potential instability of the Douglas Gunn (DG) alternating-direction-implicit (ADI) method for inhomogeneous media is demonstrated. Numerical experiments justify the gain achieved in the overall efficiency for FLOD over LOD, DG-ADI and explicit methods. Furthermore, the relative maximum error of the FLOD method illustrates good trade-off between accuracy and efficiency. key words: Alternating-direction-implicit (ADI), finite-difference method, heat transfer, locally one-dimensional (LOD), stability, temperature

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium

For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configur...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Simulation of Heat Transport in Low-Dimensional Oscillator Lattices

The study of heat transport in low-dimensional oscillator lattices presents a formidable challenge. Theoretical efforts have been made trying to reveal the underlying mechanism of diversified heat transport behaviors. In lack of a unified rigorous treatment, approximate theories often may embody controversial predictions. It is therefore of ultimate importance that one can rely on numerical sim...

متن کامل

One-Dimensional Transient Thermal and Mechanical Stresses in FGM Hollow Cylinder with Piezoelectric Layers

In this paper, an analytical method is developed to obtain the solution for the one dimensional transient thermal and mechanical stresses in a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers. The FGM properties are assumed to depend on the variable r and they are expressed as power functions of r but the Poisson’s ratio is assumed to be constant. Transient te...

متن کامل

Heat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)

This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 97-C  شماره 

صفحات  -

تاریخ انتشار 2014