The secondary endosymbiont of the cryptomonad Guillardia theta contains alpha-, beta-, and gamma-tubulin genes.

نویسندگان

  • P J Keeling
  • J A Deane
  • C Hink-Schauer
  • S E Douglas
  • U G Maier
  • G I McFadden
چکیده

Cryptomonads have acquired photosynthesis through secondary endosymbiosis: they have engulfed and retained a photosynthetic eukaryote. The remnants of this autotrophic symbiont are severely reduced, but a small volume of cytoplasm surrounding the plastid persists, along with a residual nucleus (the nucleomorph) that encodes only a few hundred genes. We characterized tubulin genes from the cryptomonad Guillardia theta. Despite the apparent absence of microtubules in the endosymbiont, we recovered genes encoding alpha-, beta-, and gamma-tubulins from the nucleomorph genome of G. theta. The presence of tubulin genes in the nucleomorph indicates that some component of the cytoskeleton is still present in the cryptomonad symbiont despite the fact that very little cytoplasm remains, no mitosis is known in the nucleomorph, and microtubules have never been observed anywhere in the symbiont. Phylogenetic analyses with nucleomorph alpha- and beta-tubulins support the origin of the cryptomonad nucleomorph from a red alga. We also characterized alpha and beta-tubulins from the host nucleus of G. theta and compared these with tubulins we isolated from two flagellates, Goniomonas truncata and Cyanophora paradoxa, previously proposed to be related to the cryptomonad host. Phylogenetic analyses support a relationship between the cryptomonad host and Goniomonas but do not support any relationship between cryptomonads and Cyanophora.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages

Cryptomonad algae acquired their plastids by the secondary endosymbiotic uptake of a eukaryotic red alga. Several other algal lineages acquired plastids through such an event [1], but cryptomonads are distinguished by the retention of a relic red algal nucleus, the nucleomorph [2]. The nucleomorph (and its absence in other lineages) can reveal a great deal about the process and history of endos...

متن کامل

Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph.

Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these "cells within cells" lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph, which has three minute linear chromosomes,...

متن کامل

Novel nucleomorph genome architecture in the cryptomonad genus hemiselmis.

Cryptomonads are ubiquitous aquatic unicellular eukaryotes that acquired photosynthesis through the uptake and retention of a red algal endosymbiont. The nuclear genome of the red alga persists in a highly reduced form termed a nucleomorph. The nucleomorph genome of the model cryptomonad Guillardia theta has been completely sequenced and is a mere 551 kilobases (kb) in size, spread over three c...

متن کامل

HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum.

The dinoflagellate Kryptoperidinium foliaceum has replaced its ancestral peridinin-containing plastid with a fucoxanthin-containing diatom plastid via tertiary endosymbiosis. The diatom endosymbiont of K. foliaceum is much less reduced than well-studied endosymbiotic intermediates, such as cryptophytes and chlorarachniophytes, where relict nuclear genomes are retained in secondary endosymbionts...

متن کامل

Complete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set

Nucleomorphs are the remnant nuclei of algal endosymbionts that were engulfed by nonphotosynthetic host eukaryotes. These peculiar organelles are found in cryptomonad and chlorarachniophyte algae, where they evolved from red and green algal endosymbionts, respectively. Despite their independent origins, cryptomonad and chlorarachniophyte nucleomorph genomes are similar in size and structure: th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 16 9  شماره 

صفحات  -

تاریخ انتشار 1999