Twitter Demographic Classification Using Deep Multi-modal Multi-task Learning
نویسندگان
چکیده
Twitter should be an ideal place to get a fresh read on how different issues are playing with the public, one that’s potentially more reflective of democracy in this new media age than traditional polls. Pollsters typically ask people a fixed set of questions, while in social media people use their own voices to speak about whatever is on their minds. However, the demographic distribution of users on Twitter is not representative of the general population. In this paper, we present a demographic classifier for gender, age, political orientation and location on Twitter. We collected and curated a robust Twitter demographic dataset for this task. Our classifier uses a deep multi-modal multitask learning architecture to reach a stateof-the-art performance, achieving an F1score of 0.89, 0.82, 0.86, and 0.68 for gender, age, political orientation, and location respectively.
منابع مشابه
Multi-Modal Multi-Task Deep Learning for Autonomous Driving
Several deep learning approaches have been applied to the autonomous driving task, many employing end-toend deep neural networks. Autonomous driving is complex, utilizing multiple behavioral modalities ranging from lane changing to turning and stopping. However, most existing approaches do not factor in the different behavioral modalities of the driving task into the training strategy. This pap...
متن کاملMulti-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation
Large-scale image annotation is a challenging task in image content analysis, which aims to annotate each image of a very large dataset with multiple class labels. In this paper, we focus on two main issues in large-scale image annotation: 1) how to learn stronger features for multifarious images; 2) how to annotate an image with an automatically-determined number of class labels. To address th...
متن کاملMulti-modal Face Pose Estimation with Multi-task Manifold Deep Learning
Human face pose estimation aims at estimating the gazing direction or head postures with 2D images. It gives some very important information such as communicative gestures, saliency detection and so on, which attracts plenty of attention recently. However, it is challenging because of complex background, various orientations and face appearance visibility. Therefore, a descriptive representatio...
متن کاملSemi-supervised Bayesian Deep Multi-modal Emotion Recognition
In emotion recognition, it is difficult to recognize human’s emotional states using just a single modality. Besides, the annotation of physiological emotional data is particularly expensive. These two aspects make the building of effective emotion recognition model challenging. In this paper, we first build a multi-view deep generative model to simulate the generative process of multi-modality ...
متن کاملMulti-modal Disease Classification in Incomplete Datasets Using Geometric Matrix Completion
In large population-based studies and in clinical routine, tasks like disease diagnosis and progression prediction are inherently based on a rich set of multi-modal data, including imaging and other sensor data, clinical scores, phenotypes, labels and demographics. However, missing features, rater bias and inaccurate measurements are typical ailments of real-life medical datasets. Recently, it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017