Green Computing: Power Optimisation of VFI-based Real-time Multiprocessor Dataflow

نویسندگان

  • Waheed Ahmad
  • Philip K.F. Hölzenspies
  • Mariëlle Stoelinga
  • Jaco van de Pol
چکیده

Execution time is no longer the only performance metric for computer systems. In fact, a trend is emerging to trade raw performance for energy savings. Techniques like Dynamic Power Management (DPM, switching to low power state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor frequency) help modern systems to reduce their power consumption while adhering to performance requirements. To balance flexibility and design complexity, the concept of Voltage and Frequency Islands (VFIs) was recently introduced for power optimisation. It achieves fine-grained system-level power management, by operating all processors in the same VFI at a common frequency/voltage. This paper presents a novel approach to compute a power management strategy combining DPM and DVFS. In our approach, applications (modelled in full synchronous dataflow, SDF) are mapped on heterogeneous multiprocessor platforms (partitioned in voltage and frequency islands). We compute an energy-optimal schedule, meeting minimal throughput requirements. We demonstrate that the combination of DPM and DVFS provides an energy reduction beyond considering DVFS or DMP separately. Moreover, we show that by clustering processors in VFIs, DPM can be combined with any granularity of DVFS. Our approach uses model checking, by encoding the optimisation problem as a query over priced timed automata. The model-checker Uppaal Cora extracts a cost minimal trace, representing a power minimal schedule. We illustrate our approach with several case studies on commercially available hardware.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiprocessor Scheduling For Real Time Systems Embedded Systems

energy-ef?cient tasks scheduling algorithm for real-time utility accrual real-time scheduling for multiprocessor multiprocessor real-time scheduling in industrial embedded a novel approach for off-line multiprocessor scheduling in multiprocessor scheduling for real time systems embedded robust partitioned scheduling for realtime multiprocessor multiprocessor scheduling for real time systems emb...

متن کامل

Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor With Reduced Response Time Bounds

Heterogeneous computing platforms with multiple types of computing resources have been widely used in many industrial systems to process dataflow tasks with pre-defined affinity of tasks to subgroups of resources. For many dataflow workloads with soft real-time requirements, guaranteeing fast and bounded response times is often the objective. This paper presents a new set of analysis techniques...

متن کامل

A Hierarchical Multiprocessor Scheduling Framework for Synchronous Dataflow Graphs

This paper discusses a hierarchical scheduling framework to reduce the complexity of scheduling synchronous dataflow (SDF) graphs onto multiple processors. The core of this framework is a clustering algorithm that reduces the number of nodes before expanding the SDF graph into a precedence DAG (directed acyclic graph). The internals of the clusters are then scheduled with uniprocessor SDF sched...

متن کامل

Predictable and Composable Multiprocessor System Design: A Constructive Approach

In this paper we present design rules for embedded multiprocessor systems that enable the derivation of the temporal behavior of stream-processing applications by means of dataflow analysis techniques. With these dataflow analysis techniques we can determine appropriate scheduler settings and buffer capacities such that real-time constraints are satisfied. A car-radio design constitutes our exa...

متن کامل

On the hard-real-time scheduling of embedded streaming applications

In this paper, we consider the problem of hard-real-time (HRT) multiprocessor scheduling of embedded streaming applications modeled as acyclic dataflow graphs. Most of the hard-real-time scheduling theory for multiprocessor systems assumes independent periodic or sporadic tasks. Such a simple task model is not directly applicable to dataflow graphs, where nodes represent actors (i.e., tasks) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015