The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex.

نویسندگان

  • K L Allendoerfer
  • C J Shatz
چکیده

The functioning of the mammalian brain depends upon the precision and accuracy of its neural connections, and nowhere is this requirement more evident than in the neocortex of the cerebral hemispheres. The neocortex is a structure that is divided both radially, from the pial surface to the white matter into six cell layers , and tangentially into more than 40 different cytoarchitectu­ ral areas (Brodmann 1909). For instance , within the cerebral hemispheres , sets of tangential axonal connections link neurons within a given cortical layer to each other and also link neurons of different cortical areas; sets of radial connections link neurons of different layers together. In addition, the major input to the neocortex arises from neurons in the thalamus , which in tum receive a reciprocal set of connections from the cortex. These connections are highly restricted: In the radial domain, thalamic axons make their major projection to the neurons of cortical layer 4, and the neurons of cortical layer 6 project back

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of subplate neurons in functional maturation of visual cortical columns.

The subplate forms a transient circuit required for development of connections between the thalamus and the cerebral cortex. When subplate neurons are ablated, ocular dominance columns do not form in the visual cortex despite the robust presence of thalamic axons in layer 4. We show that subplate ablation also prevents formation of orientation columns. Visual responses are weak and poorly tuned...

متن کامل

Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity?

T subplate is a transient structure comprised of a subset of the earliest neurons produced in the cerebral cortex (1). Although it has now been almost 30 years since the subplate was first described (2), a definitive function for the subplate remains unproven. In general, the subplate is believed to be important for the formation of connections between thalamus and cortex. Subplate neurons have...

متن کامل

Subplate pioneers and the formation of descending connections from cerebral cortex.

The adult cerebral cortex extends axons to a variety of subcortical targets, including the thalamus and superior colliculus. These descending projections are pioneered during development by the axons of a transient population of subplate neurons (McConnell et al., 1989). We show here that the descending axons of cortical plate neurons appear to be delayed significantly in their outgrowth, compa...

متن کامل

A role for subplate neurons in the patterning of connections from thalamus to neocortex.

During cerebral cortical development, ingrowing axons from different thalamic nuclei select and invade their cortical targets. The selection of an appropriate target is first evident even before thalamic axons grow into the cortical plate: initially axons accumulate and wait below their cortical target area in a zone called the subplate. This zone also contains the first postmitotic neurons of ...

متن کامل

P15: Hippocampus-Neocortical Communication in Learning

The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of neuroscience

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1994