Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for beta-globin locus control region complex.
نویسندگان
چکیده
The human beta-globin locus control region (LCR) is required to properly regulate chromatin domain opening, replication timing, and globin gene activation. The LCR contains multiple NF-E2 sites (Maf recognition elements, MAREs) that allow the binding of various basic leucine zipper (bZip) proteins like p45 NF-E2, Nrf1, Nrf2, Bach1, and Bach2, in some cases as obligate heterodimers with a small Maf protein. In addition to the bZip domain, the Bach proteins bear a BTB/POZ domain, which has been implicated in the regulation of chromatin structure. We show here that Bach1 is highly expressed in hematopoietic cells and constitutes one of the two MARE-binding activities in murine erythroleukemic (MEL) cells. We further demonstrate that Bach1/MafK heterodimers interact with each other through the BTB domain, generating a multimeric and multivalent DNA binding complex. These results strongly implicate Bach1/MafK heterodimer as an architectural transcription factor that mediates interactions among multiple MAREs. Such a factor could then provide a model for assembly of the theoretical beta-globin LCR "holocomplex. " Other BTB domain proteins have already been demonstrated to be involved in remodeling chromatin, and thus this class of proteins likely promote the formation of nucleoprotein complexes required to establish the architecture of regulatory domains.
منابع مشابه
Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1.
BACKGROUND A central question in vertebrate transcriptional regulation is how cis-regulatory modules, including enhancers, silencers and promoters, communicate with each other over long distances to mandate proper gene expression. In order to address this question we analysed protein/DNA interactions in the human beta-globin locus control region (LCR). One of the many proteins that are potentia...
متن کاملHeme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network.
Small Maf proteins serve as dual-function transcription factors through an exchange of their heterodimerization partners. For example, as heterodimers with hematopoietic cell-specific p45 NF-E2 or NF-E2-related factors (Nrf), they activate the beta-globin or antioxidative stress enzyme heme oxygenase 1 (HO-1) genes, respectively. In contrast, together with Bach1, they repress these same genes. ...
متن کاملActivation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.
The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during e...
متن کاملThe world according to Maf.
Maf family proteins are so named because of their structural similarity to the founding member, the oncoprotein v-Maf. The small Maf proteins (MafF, MafG and MafK), as do all family members, include a characteristic basic region linked to a leucine zipper (b-Zip) domain which mediate DNA binding and subunit dimerization respectively. The small Maf proteins form homodimers or heterodimers with o...
متن کاملTransgenic expression of BACH1 transcription factor results in megakaryocytic impairment.
Both nuclear factor erythroid 2 45 kDa subunit (p45) and BTB and CNC homolog 1 (Bach) transcription factors can form dimers with one of the small Maf proteins, and these heterodimers bind to the musculoaponeurotic fibrosarcoma oncogene (Maf) recognition element (MARE). MARE is known to act as a critical cis-regulatory element of erythroid and megakaryocytic genes. Although detailed analyses of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 273 19 شماره
صفحات -
تاریخ انتشار 1998