Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T
نویسندگان
چکیده
Recent technological progress in the multiband echo planer imaging (MB EPI) technique enables accelerated MR diffusion weighted imaging (DWI) and allows whole brain, multi-b-value diffusion imaging to be acquired within a clinically feasible time. However, its applications at 7 T have been limited due to B1 field inhomogeneity and increased susceptibility artifact. It is an ongoing debate whether DWI at 7 T can be performed properly in patients, and a systematic SNR comparison for multiband spin-echo EPI between 3 T and 7 T has not been methodically studied. The goal of this study was to use MB EPI at 7 T in order to obtain 90-directional multi-shell DWI within a clinically feasible acquisition time for patients with glioma. This study included an SNR comparison between 3 T and 7 T, and the application of B1 mapping and distortion correction procedures for reducing the impact of variations in B0 and B1. The optimized multiband sequence was applied in 20 patients with glioma to generate both DTI and NODDI maps for comparison of values in tumor and normal appearing white matter (NAWM). Our SNR analysis showed that MB EPI at 7 T was comparable to that at 3 T, and the data quality acquired in patients was clinically acceptable. NODDI maps provided unique contrast within the T2 lesion that was not seen in anatomical images or DTI maps. Such contrast may reflect the complexity of tissue compositions associated with disease progression and treatment effects. The ability to consistently obtain high quality diffusion data at 7 T will contribute towards the implementation of a comprehensive brain MRI examination at ultra-high field.
منابع مشابه
Assessing Microstructural Substrates of White Matter Abnormalities: A Comparative Study Using DTI and NODDI
Neurite orientation dispersion and density imaging (NODDI) enables more specific characterization of tissue microstructure by estimating neurite density (NDI) and orientation dispersion (ODI), two key contributors to fractional anisotropy (FA). The present work compared NODDI- with diffusion tensor imaging (DTI)-derived indices for investigating white matter abnormalities in a clinical sample. ...
متن کاملWhole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task
A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo (GE) EPI multiband sequence (TR of 1.4 s) using a color-word Stroop task. PINS RF pulses were used ...
متن کاملAdvanced Diffusion Acquisition
Target Audience: Methodologically oriented scientists interested in accelerating the acquisition of diffusionweighted data using multiband/simultaneous multi-slice techniques. Outcome/Objectives: The presentation will explain how to acquire and reconstruct multiband images with diffusion weighting. The audience should understand the additional constraints imposed by performing diffusion-weighti...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملBingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI
This paper presents Bingham-NODDI, a clinically-feasible technique for estimating the anisotropic orientation dispersion of neurites. Direct quantification of neurite morphology on clinical scanners was recently realised by a diffusion MRI technique known as neurite orientation dispersion and density imaging (NODDI). However in its current form NODDI cannot estimate anisotropic orientation disp...
متن کامل