Classification of NPY-expressing neocortical interneurons.
نویسندگان
چکیده
Neuropeptide Y (NPY) is an abundant neuropeptide of the neocortex involved in numerous physiological and pathological processes. Because of the large electrophysiological, molecular, and morphological diversity of NPY-expressing neurons their precise identity remains unclear. To define distinct populations of NPY neurons we characterized, in acute slices of rat barrel cortex, 200 cortical neurons of layers I-IV by means of whole-cell patch-clamp recordings, biocytin labeling, and single-cell reverse transcriptase-PCR designed to probe for the expression of well established molecular markers for cortical neurons. To classify reliably cortical NPY neurons, we used and compared different unsupervised clustering algorithms based on laminar location and electrophysiological and molecular properties. These classification schemes confirmed that NPY neurons are nearly exclusively GABAergic and consistently disclosed three main types of NPY-expressing interneurons. (1) Neurogliaform-like neurons exhibiting a dense axonal arbor, were the most frequent and superficial, and substantially expressed the neuronal isoform of nitric oxide synthase. (2) Martinotti-like cells characterized by an ascending axon ramifying in layer I coexpressed somatostatin and were the most excitable type. (3) Among fast-spiking and parvalbumin-positive basket cells, NPY expression was correlated with pronounced spike latency. By clarifying the diversity of cortical NPY neurons, this study establishes a basis for future investigations aiming at elucidating their physiological roles.
منابع مشابه
Activation of cortical 5-HT3 receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions
GABAergic interneurons are local integrators of cortical activity that have been reported to be involved in the control of cerebral blood flow (CBF) through their ability to produce vasoactive molecules and their rich innervation of neighboring blood vessels. They form a highly diverse population among which the serotonin 5-hydroxytryptamine 3A receptor (5-HT(3A))-expressing interneurons share ...
متن کاملDiversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex.
Neocortical layer VI modulates the thalamocortical transfer of information and has a significant impact on sensory processing. This function implicates local γ-aminobutyric acidergic (GABAergic) interneurons that have only been partly described at the present time. Here, we characterized 85 layer VI GABAergic interneurons in acute slices of mouse somatosensory barrel cortex, using whole-cell cu...
متن کاملExcitatory and inhibitory synapses in neuropeptide Y-expressing striatal interneurons.
Although rare, interneurons are pivotal in governing striatal output by extensive axonal arborizations synapsing on medium spiny neurons. Using a genetically modified mouse strain in which a green fluorescent protein (GFP) is driven to be expressed under control of the neuropeptide Y (NPY) promoter, we identified NPY interneurons and compared them with striatal principal neurons. We found that ...
متن کاملA novel functionally distinct subtype of striatal neuropeptide Y interneuron.
We investigated the properties of neostriatal neuropeptide Y (NPY)-expressing interneurons in transgenic GFP (green fluorescent protein)-NPY reporter mice. In vitro whole-cell recordings and biocytin staining demonstrated the existence of a novel class of neostriatal NPY-expressing GABAergic interneurons that exhibit electrophysiological, neurochemical, and morphological properties strikingly d...
متن کاملNeuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is able to modify cortical excitability. Rat rTMS studies revealed a modulation of inhibitory systems, in particular that of the parvalbumin-expressing (PV+) interneurons, when using intermittent theta-burst stimulation (iTBS). OBJECTIVE The potential disinhibitory action of iTBS raises the questions of how neocortical circuits st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 11 شماره
صفحات -
تاریخ انتشار 2009