Slopes and Colored Jones Polynomials of Adequate Links
نویسنده
چکیده
Garoufalidis conjectured a relation between the boundary slopes of a knot and its colored Jones polynomials. More precisely, certain boundary slopes are detected by the sequence of degrees of the colored Jones polynomials. We verify this conjecture for adequate knots, a class that vastly generalizes that of alternating knots.
منابع مشابه
Slopes and Colored Jones Polynomials of Adequate Knots
Garoufalidis conjectured a relation between the boundary slopes of a knot and its colored Jones polynomials. According to the conjecture, certain boundary slopes are detected by the sequence of degrees of the colored Jones polynomials. We verify this conjecture for adequate knots, a class that vastly generalizes that of alternating knots.
متن کاملOn the Degree of the Colored Jones Polynomial Efstratia Kalfagianni and Christine Ruey
We use the colored Jones link polynomials to extract an invariant that detects semi-adequate links and discuss some applications.
متن کاملOn the colored Jones polynomials of ribbon links, boundary links and Brunnian links
Habiro gave principal ideals of Z[q, q−1] in which certain linear combinations of the colored Jones polynomials of algebraically-split links take values. The author proved that the same linear combinations for ribbon links, boundary links and Brunnian links are contained in smaller ideals of Z[q, q−1] generated by several elements. In this paper, we prove that these ideals also are principal, e...
متن کاملA Jones Slopes Characterization of Adequate Knots
We establish a characterization of adequate knots in terms of the degree of their colored Jones polynomial. We show that, assuming the Strong Slope conjecture, our characterization can be reformulated in terms of “Jones slopes” of knots and the essential surfaces that realize the slopes. For alternating knots the reformulated characterization follows by recent work of J. Greene and J. Howie. 20...
متن کاملThe Colored Jones Polynomials and the Simplicial Volume of a Knot
We show that the set of colored Jones polynomials and the set of generalized Alexander polynomials defined by Akutsu, Deguchi and Ohtsuki intersect non-trivially. Moreover it is shown that the intersection is (at least includes) the set of Kashaev’s quantum dilogarithm invariants for links. Therefore Kashaev’s conjecture can be restated as follows: The colored Jones polynomials determine the hy...
متن کامل