Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

نویسندگان

  • Jordan M Joy
  • David M Gundermann
  • Ryan P Lowery
  • Ralf Jäger
  • Sean A McCleary
  • Martin Purpura
  • Michael D Roberts
  • Stephanie MC Wilson
  • Troy A Hornberger
  • Jacob M Wilson
چکیده

INTRODUCTION The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. METHODS In phase one, C2C12 myoblasts cells were stimulated with different phospholipids and phospholipid precursors derived from soy and egg sources. The ratio of phosphorylated p70 (P-p70-389) to total p70 was then used as readout for mTOR signaling. In phase two, resistance trained subjects (n = 28, 21 ± 3 years, 77 ± 4 kg, 176 ± 9 cm) consumed either 750 mg PA daily or placebo and each took part in an 8 week periodized resistance training program. RESULTS In phase one, soy-phosphatidylserine, soy-Lyso-PA, egg-PA, and soy-PA stimulated mTOR signaling, and the effects of soy-PA (+636%) were significantly greater than egg-PA (+221%). In phase two, PA significantly increased lean body mass (+2.4 kg), cross sectional area (+1.0 cm), and leg press strength (+51.9 kg) over placebo. CONCLUSION PA significantly activates mTOR and significantly improved responses in skeletal muscle hypertrophy, lean body mass, and maximal strength to resistance exercise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidic acid supplementation increases skeletal muscle hypertrophy and strength

Introduction The accretion of skeletal muscle tissue can be critical for a varied population including athletes and elderly. Skeletal muscle hypertrophy is largely mediated through increased muscle protein synthesis. The mammalian target of rapamycin (mTOR) has been shown to regulate rates of muscle protein synthesis and a mechanical stimulus (resistance exercise) has been shown to activate mTO...

متن کامل

Safety of soy-derived phosphatidic acid supplementation in healthy young males

Background The mammalian target of rapamycin (mTOR) has been shown to regulate rates of muscle protein synthesis, and one novel nutritional activator of mTOR is the phospholipid Phosphatidic Acid (PA). We have recently found that PA supplementation over 8 weeks of resistance training augmented responses in skeletal muscle hypertrophy and strength. However, we are unaware of research investigati...

متن کامل

Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals

The mechanistic target of rapamycin complex 1 (mTORC1) has received much attention in the field of exercise physiology as a master regulator of skeletal muscle hypertrophy. The multiprotein complex is regulated by various signals such as growth factors, energy status, amino acids and mechanical stimuli. Importantly, the glycerophospholipid phosphatidic acid (PA) appears to play an important rol...

متن کامل

Soy-derived Phosphatidic Acid, Lysophosphatidic acid and Phosphatidylserine are sufficient to induce an increase in mTOR signaling

Background A protein kinase called the mechanistic target of rapamycin (mTOR) is a well-known regulator of cellular growth. In fact, several studies have indicated that the kinase activity of mTOR is required for mechanicallyinduced increases in skeletal muscle protein synthesis and hypertrophy. Previous studies have also determined that the lipid messenger phosphatidic acid (PA) plays a critic...

متن کامل

Effect of oral administration of soy-derived phosphatidic acid on concentrations of phosphatidic acid and lyso-phosphatidic acid molecular species in human plasma

Background The glycerophospholipid Phosphatidic acid (PA) has been identified as a potential nutritional treatment for gastrointestinal disorders. Dietary food sources rich in PA include cabbage and radish leaves as well as Mallotus japonicas, a Japanese edible herb historically used for the treatment of stomach ulcers. The mammalian target of rapamycin (mTOR) has been shown to regulate rates o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014