Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method.
نویسندگان
چکیده
For analyzing diffraction gratings, a new method is developed based on dividing one period of the grating into homogeneous subdomains and computing the Neumann-to-Dirichlet (NtD) maps for these subdomains by boundary integral equations. For a subdomain, the NtD operator maps the normal derivative of the wave field to the wave field on its boundary. The integral operators used in this method are simple to approximate, since they involve only the standard Green's function of the Helmholtz equation in homogeneous media. The method retains the advantages of existing boundary integral equation methods for diffraction gratings but avoids the quasi-periodic Green's functions that are expensive to evaluate.
منابع مشابه
Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction.
Boundary integral equation methods for diffraction gratings are particularly suitable for gratings with complicated material interfaces but are difficult to implement due to the quasi-periodic Green's function and the singular integrals at the corners. In this paper, the boundary integral equation Neumann-to-Dirichlet map method for in-plane diffraction problems of gratings [Y. Wu and Y. Y. Lu,...
متن کاملHigh order integral equation method for diffraction gratings.
Conventional integral equation methods for diffraction gratings require lattice sum techniques to evaluate quasi-periodic Green's functions. The boundary integral equation Neumann-to-Dirichlet map (BIE-NtD) method in Wu and Lu [J. Opt. Soc. Am. A 26, 2444 (2009)], [J. Opt. Soc. Am. A 28, 1191 (2011)] is a recently developed integral equation method that avoids the quasi-periodic Green's functio...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملChallenges and Applications of Boundary Element Domain Decomposition Methods
Boundary integral equation methods are well suited to represent the Dirichlet to Neumann maps which are required in the formulation of domain decomposition methods. Based on the symmetric representation of the local Steklov– Poincaré operators by a symmetric Galerkin boundary element method, we describe a stabilized variational formulation for the local Dirichlet to Neumann map. By a strong cou...
متن کاملModeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps
Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN maps allow us to reduce the computation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2009