EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall.
نویسندگان
چکیده
The detection of EMILIN1, a connective tissue glycoprotein associated with elastic fibers, at the level of the ectoplacental cone and trophoblast giant cells of developing mouse embryos (Braghetta et al., 2002) favored the idea of a structural as well as a functional role for this protein in the process of placentation. During the establishment of human placenta, a highly migratory subpopulation of extravillous trophoblasts (EVT), originating from anchoring chorionic villi, penetrate and invade the uterine wall. In this study we show that EMILIN1, produced by decidual stromal and smooth muscle uterine cells, is expressed in the stroma and in some instances as a gradient of increasing concentration in the perivascular region of modified vessels. This distribution pattern is consistent with the haptotactic directional migration observed in in vitro functional studies of freshly isolated EVT and of the immortalized HTR-8/SVneo cell line of trophoblasts. Function-blocking monoclonal antibodies against alpha4-integrin chain and against EMILIN1 as well as the use of EMILIN1-specific short interfering RNA confirmed that trophoblasts interact with EMILIN1 and/or its functional gC1q1 domain via alpha4beta1 integrin. Finally, membrane type I-matrix metalloproteinase (MT1-MMP) and MMP-2 were upregulated in co-cultures of trophoblast cells and stromal cells, suggesting a contributing role in the haptotactic process towards EMILIN1.
منابع مشابه
Implantation of the human embryo requires Rac1-dependent endometrial stromal cell migration.
Failure of the human embryo to implant into the uterine wall during the early stages of pregnancy is a major cause of infertility. Implantation involves embryo apposition and adhesion to the endometrial epithelium followed by penetration through the epithelium and invasion of the embryonic trophoblast through the endometrial stroma. Although gene-knockdown studies have highlighted several molec...
متن کاملAngiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells
Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...
متن کاملRole of nuclear receptors and their ligands in human trophoblast invasion.
Human implantation involves a major invasion of the uterine wall and complete remodelling of uterine arteries by extravillous cytotrophoblasts (EVCT). Abnormality in these early steps of placental development leads to poor placentation, fetal growth defects and is often associated with preeclampsia, a major and frequent complication of human pregnancy. To study the mechanisms that control troph...
متن کاملTrophoblast-derived heparanase is not required for invasion.
To invade the decidua and myometrium, extravillous trophoblast must degrade an assortment of extracellular matrix (ECM) components. The uterine wall is rich in heparan sulphate proteoglycans (HSPG), which interact with collagen, laminin and fibronectin, and bind a variety of growth factors. HSPG are catabolised by heparanase, an enzyme that is highly expressed in the placenta. The aim of this s...
متن کاملHuman trophoblast function during the implantation process
The implantation process involves complex and synchronized molecular and cellular events between the uterus and the implanting embryo. These events are regulated by paracrine and autocrine factors. Trophoblast invasion and migration through the uterine wall is mediated by molecular and cellular interactions, controlled by the trophoblast and the maternal microenvironment. This review is focused...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 119 Pt 21 شماره
صفحات -
تاریخ انتشار 2006